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ABSTRACT 

 

An abstract of the thesis of Christine Marie LeDoux for the Master of Science in 

Geology presented October 23, 2007. 

 

Title: A boundary element model for fracture propagation in the Ronne Ice Shelf, 

Antarctica. 

 

 Calving of tabular icebergs is the dominant mass loss mechanism of large Antarctic 

ice shelves. In the Ronne Ice Shelf, Antarctica, large rifts near the shelf front are 

observed to begin as fractures along the lateral boundaries of large outlet streams 

feeding the shelf. The purpose of this study is to understand how an initial population of 

fractures evolves to become the large rifts along which tabular icebergs calve. Crack tip 

arrest is often observed to coincide with structural boundaries, such as “suture” zones 

between ice from adjacent outlet glaciers. The hypothesis tested in this work is that 

structural boundaries in the ice shelf are important in crack tip arrest.  

 A set of fractures advecting from the Evans Ice Stream to the front of the Ronne Ice 

Shelf are investigated using propagation models based on linear elastic fracture 

mechanics. Fracture geometries and material boundaries were digitized from a mosaic 

of stacked MODIS (Moderate Resolution Imaging Spectroradiometer) images. Ice-shelf 

stresses were computed from velocity data collected via satellite remote sensing. 

Stresses are simulated using the displacement discontinuity method, a boundary element 

   



technique. Stress intensity factors and mixed-mode fracture propagation behavior are 

evaluated using the maximum circumferential tensile stress criterion. Conclusions 

drawn from a set of experiments conducted with the model support the hypothesis. 

 An important goal in studying the propagation of ice shelf fractures is the 

development of a “calving criterion” that can be used in simulation of ice shelf and ice 

sheet evolution over long time scales. Current developments of calving criteria 

parameterize the calving rate according to longitudinal strain rates, an approach that 

implies a dominant role for vertical propagation in calving events. For ice shelves in 

wide embayments, however, the work presented here suggests that it is more physically 

realistic to base a calving criterion on the requirements for horizontal propagation. A 

criterion incorporating these findings may be developed to predict a position toward 

which the shelf front will tend, given a specified embayment geometry and ice 

thickness. 
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1 Introduction 

 

 Large, transverse fractures that appear near the fronts of ice shelves become the 

planes along which large icebergs calve. In the Ronne Ice Shelf, Antarctica (Figure 1.1), 

such rifts are observed to begin as shear-margin fractures along the lateral boundaries of 

large outlet streams feeding the shelf. The fractures may grow as they are advected 

through the shelf, responding to changes in the local stress field. The local stress field 

depends on the glaciological (far-field) stress, the geometry of the fracture, and the 

geometries of nearby fractures. Inhomogeneity of the ice may also be important. 

Propagation depends on the stress concentration at the fracture tip and may be episodic 

(growth followed by arrest and re-initiation). It is important to understand how 

relatively small fractures evolve into large ice shelf rifts so that physical processes 

governing ice shelf mass balance may be accounted for in predictive ice sheet models.  

 The study area is in the outflow of the Evans Ice Stream, which has the largest 

influx of ice to the Ronne Ice Shelf and a simple flow history. The Ronne-Filchner Ice 

Shelf is the second largest ice shelf in Antarctica, with a combined area of 487,000 km2 

(Sandhager et al., 2004). Ten ice streams flow from the West and East Antarctic Ice 

Sheets into the ice shelf. Berkner Island lies between the Ronne and Filchner ice 

shelves.  

 

 



 
Figure 1.1 (a) Location of the Ronne-Filchner Ice Shelf within Antarctica. (b) The Ronne-Filchner Ice 
Shelf with the location of the outflow of the Evans Ice Stream outlined by solid line. Image from the 
MODIS Mosaic of Antarctica (Haran et al., 2005). (c) The outflow of the Evans Ice Stream, in the 
western Ronne Ice Shelf. Ice-shelf features and fractures digitized from the remote-sensed imagery in (b). 

 
 
 
 

Ice Shelf Mass Balance 

 An ice shelf is a thick, floating platform of ice that may form at the terminus of an 

outlet glacier that flows into a sufficiently deep body of water (Paterson, 1994, p. 289). 

The two largest ice shelves in Antarctica, the Ross and the Ronne-Filchner, serve as the 
  2 



conduits through which approximately two-thirds of ice leaving the West Antarctic Ice 

Sheet (WAIS) flows. The WAIS rests on bedrock below sea level, most of which would 

remain below sea level even if all of the ice were removed. This “marine” character has 

been cited as a possible cause for instability in the ice sheet–ice-shelf system were ice-

shelf geometry to change significantly (Mercer, 1978; Thomas et al., 1979).  

 Fast-moving ice streams transport ice from the interior of the ice sheet to the 

floating ice shelves. The grounding line, or location where ice begins to float, migrates 

seaward or landward in response to changing mass balance of the system. Ice shelf mass 

accumulation occurs through ice discharged from ice streams and outlet glaciers, marine 

ice accretion at the base of the ice shelf, and snowfall. Ablation occurs through calving 

of large tabular icebergs, melting at the underside of the shelf, and surface melting. The 

Ronne-Filchner Ice Shelf is the second largest ice shelf in Antarctica, with a combined 

area of 487,000 km2 (Sandhager et al., 2004).  

 Calving of tabular icebergs is the dominant mass loss mechanism of large Antarctic 

ice shelves (Paterson, 1994 , p. 44). The large tabular icebergs A-43 and A-44, which 

calved from the western front of the Ronne Ice Shelf in May 2000 (Figure 1.2), 

contained an ice mass of 2075 x 1012 kg, approximately equivalent to one year’s 

accumulation across the entire Antarctic Ice Sheet (2326 x 1012 kg a-1; Giovinetto and 

Zwally, 2000). By comparison, melting from ice shelves is ~544 kg a-1 (Jacobs et al., 

1992). 
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a b 

Figure 1.2 May 2000 calving of A-43 and A-44 icebergs from the western front of the Ronne Ice Shelf.  
Images derived from RADARSAT-1 ScanSAR by Canadian Centre for Remote Sensing (2000). Prior to 
splitting into sections A and B, A-43 measured approximately 257 km by 36 km (9252 km2) and A-44 
measured approximately 72 km by 31 km (2232 km2). (a) May 5, 2000. (b) May 11, 2000. 

 

 The dominance of iceberg calving in mass loss from the WAIS and the role of 

fractures in ice shelf collapse events (Hughes, 1983; Scambos et al., 2000) make 

fracture propagation an important process to understand. Yet few ice-sheet models in 

use today incorporate principles from fracture mechanics in the description of mass loss 

at the calving fronts of ice shelves. This is, in part, because the topic is poorly 

understood. Insights gained in the present work may advance the development of useful 

parameterizations for mass loss due to iceberg calving at the fronts of large ice shelves.  

 

Fracture Mechanics 

 Fractures are an observable effect of stress in a material. They form during the 

deformation associated with many geologic events, including landslides (Fleming and 

Johnson, 1989; Palmer and Rice, 1973), fault displacements (Aydin and Johnson, 1978; 

Fleming and Johnson, 1989), and glacier flow (Hambrey and Müller, 1978; Nemat-
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Nasser et al., 1979; Nye, 1957; Smith, 1976; Weertman, 1973). Fractures may nucleate 

as microcracks, originating from an internal weakness in the material such as an air 

pocket. If the fracture nucleates but the local stress field is in equilibrium, the fracture 

will not grow. Changes in the stress field drive propagation. These changes may include 

an increase in fluid pressure within the fracture or modification to the remote stress. 

Stresses are concentrated at the fracture tips and fracture propagation occurs when tip 

stress intensity exceeds a critical material value, the fracture toughness. In the present 

work, through-cutting rifts, crevasses, and cracks are treated as mixed-mode fractures 

that can be studied using linear elastic fracture mechanics (LEFM) theory. 

 Structural boundaries may initiate or arrest growth, or change the direction of 

fracture propagation. In geologic materials, fracture propagation often terminates at 

discontinuities such as a lithologic boundaries, faults, or other fractures (Degraff and 

Aydin, 1987). Fracture geometries mapped for this thesis indicate that important 

structural boundaries may arrest fracture growth. Structural boundaries include former 

shear margins or suture zones formed by ice originating from different ice streams. 

 Glacier systems provide a unique opportunity to observe the evolution of fractures. 

It is rare to observe active fracture propagation in geologic settings. The relative 

accessibility of fractures in glacier ice (at the surface, not in deeply buried rocks) offers 

more opportunities than are available in other geologic settings. For the small process 

zone near the fracture tip, episodic fracture growth has been observed by direct 

measurement (Bassis et al., 2005). This growth occurs on short time scales (minutes to 

hours) and is confined to a small region near the tip. Here, we are interested in large-
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scale features that are observed by remote sensing (Figure 1.3). Growth occurs over 

medium-length time scales (days or longer) and the stress shadow cast by the fracture 

extends beyond the region near the tip.  

 Fractures in glacier ice form where stresses are large enough to exceed the fracture 

toughness of the ice. Such conditions often arise at stick-slip boundaries such as 

grounding lines and lateral margins. Once initiated, fractures advect downstream with 

ice flow, propagating according to the stress intensity at the fracture tips. Near the shelf 

front, large transverse fractures develop, becoming the planes along which icebergs 

calve. 

 

Crack Tip Arrest 

 Several mechanisms may drive crack tip arrest. We observe that the large rifts in the 

Ronne Ice Shelf (more than 30 km in length) begin as starter fractures in shear zones 

along the lateral boundaries of ice streams. As these fractures advect towards the shelf 

front, the propagation direction may change or a fracture tip may become inactive. 

Stress intensity at the fracture tip increases with increasing fracture length. Thus, the 

longer a fracture becomes, the more likely it is to continue propagating in a given 

remote stress field. Yet fractures in the ice shelf (and other geologic materials) are 

observed to have finite lengths. The explanation for this is typically that interaction 

among adjacent fractures reduces stress intensity at the fracture tip and limits 

propagation. In the Ronne Ice Shelf, inhomogeneity within the ice also appears to be 

important. 
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 Crack tip arrest is often observed to coincide with structural boundaries, such as 

“suture” zones between ice from adjacent outlet ice streams (Figure 1.3). Downstream, 

the fracture may reactivate and arrest at another structural boundary. We hypothesize 

that these structural boundaries are important in crack tip arrest. To test this hypothesis, 

we model fracture propagation in the ice shelf. 

 
Figure 1.3 Large rifts near the western front of the Ronne Ice Shelf observed in MODIS imagery (Haran 
et al., 2005). Near the shelf front, these rifts exceed 100 km in length. Solid blue lines trace the 
boundaries between the outflow of ice from different ice streams; purple dashed lines trace suture zone; 
and purpled dotted lines represent streaklines.  

 

 In order to study the effect of structural boundaries on propagation, we pose the 

question – is the glaciological stress field sufficient to propagate a given fracture? Two 

outcomes are possible. If the fracture propagates but we do not observe propagation in 

the ice shelf, then the structural boundary must play an important role in crack tip arrest. 
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If the fracture does not grow, then the stress conditions must not be favorable to growth 

and we learn little about the role of the structural boundary.  

 

Numerical Method 

 In the present work, fracture propagation in ice is treated as an elastic boundary 

value problem. Boundary value problems are solved using a variety of numerical 

techniques. One approach is to simulate stresses throughout a region of interest, which 

is divided into a network of elements (finite element method). This method requires 

stress conditions to be specified for all elements of a design mesh within the model 

domain (Hughes, 2000). An alternative approach, the boundary element method (BEM), 

requires only discretization of the boundary and fractures, resulting in a smaller set of 

equations. The displacement discontinuity method (DDM) is a boundary element 

method developed to handle slit-like openings or thin fractures. A displacement 

discontinuity is the relative movement of one side of the fracture to the other, assumed 

constant along the length the fracture or boundary element.  

 Stresses are simulated throughout a fractured region in several steps. First, the 

fracture is divided into a number of elements and a constant displacement discontinuity 

assigned to each element. Next, the influences of the elements on one another are 

described using fundamental solutions that satisfy the governing differential equations, 

resulting in a set of influence coefficients. A system of linear equations composed of the 

known boundary stresses and the influence coefficients for these stresses is then solved 
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for the unknown elemental displacement discontinuities. Once the displacement 

discontinuities are computed for the boundary elements, stresses are computed along the 

fracture and at specified locations within the surrounding region using the principle of 

superposition. These stresses are due to the combined influences of the boundary 

stresses, and the geometry and proximity of any fractures within the region. Finally, the 

computed stresses at the fracture tips are used in fracture mechanics equations to 

compute stress intensity factors and predict propagation. 

 

Objectives 

 The thesis has two components: (1) mapping fractures and other features of interest 

in the Ronne Ice Shelf, and (2) application of the boundary element method to study the 

evolution of fractures that advect downstream and eventually become large shelf-front 

rifts. Fracture geometries and structural boundaries are digitized from stacked 

composite MODIS (Moderate Resolution Imaging Spectroradiometer) satellite images 

(Haran et al., 2005). A set of fractures advecting from the Evans Ice Stream to the front 

of the Ronne Ice Shelf (Figure 1.1c) are investigated using propagation models based on 

linear elastic fracture mechanics. Ice-shelf strain rates and associated stresses are 

computed from measured velocity data (Ian Joughin, UW Applied Physics Laboratory, 

personal communication, 2005). Model boundary conditions and elasticity parameters 

are calibrated to achieve reasonable agreement between model and observed stress 

fields.  
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 The boundary element method used here is the displacement discontinuity method 

by Crouch and Starfield (1983). The method has been applied to study fracture 

geometries in rock (Olson and Pollard, 1989; Sempere and Macdonald, 1986) and the 

propagation of magma-filled fractures deep within Earth (Dahm, 2000). A suite of user 

input-driven tools is developed that can be used to study fracture propagation at nearly 

any location within the ice shelf. Once validated for the selected fractures, the model 

may be used to study past and present fracture propagation at other locations, including 

within other ice shelves that satisfy model assumptions. 
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2 Fracture Mechanics 

 
 Fracture mechanics provides the physical and mathematical framework for studying 

fracture propagation in glacier ice. Lawn and Wilshire (1975, p. 81) define three modes 

of fracturing (Figure 2.1). Mode I propagation (‘opening mode’) occurs when the 

fracture is subject to tensile stresses normal to the fracture plane. Displacement of the 

fracture walls is perpendicular to the fracture plane. The fracture tip propagates in the 

direction of least tensile stress. Mode II propagation (‘sliding mode’) results from shear 

loading in the fracture plane. Displacement occurs in the plane and normal to the 

fracture edge. Mode III propagation (‘tearing mode’) results from out-of-plane shear 

loading. Here, our interest is in mode I and II mixed-mode fracture propagation (Figure 

2.2). 

 
Figure 2.1 Modes of fracturing: mode I (‘opening’), mode II (‘sliding’), and mode III (‘tearing’). 

 



 

Figure 2.2 Cartoon depicting the ice shelf as a thin plate, in which the vertical dimension is much smaller 
than the horizontal dimensions. Mode I fractures propagate normal to the direction of most extensive 
principal stress, here due to longitudinal extension. Mode II fractures are located within shear margins in 
the ice where ice speed at the margin is much lower than within the main body of ice flow. Shaded area 
represents ice speed within an ice shelf. 

  

 Fracture propagation is controlled by the stress intensity at the fracture tip, 

computed using stress intensity factors for each mode of propagation, and fracture 

toughness, a material property defined as a critical stress intensity factor beyond which 

propagation will occur. If the stress intensity at the fracture tip exceeds the fracture 

toughness of the ice, the fracture will propagate. In the ice shelf, stress intensity at the 

tip may be reduced by mechanical interactions with other fractures or by 

inhomogeneities in the ice. Two types of interaction may be important in the study area:  

1. A single propagating fracture may enter the region of influence of a pre-existing 

fracture. This can lead to crack tip arrest or a change in orientation of the 

propagating fracture (Cotterell and Rice, 1980).  

2. Closely-spaced (the distance between fractures is small relative to the fracture 

lengths), subparallel fractures may affect each others’ propagation. A longer 

fracture may inhibit growth of neighboring fractures or fractures of equal 
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lengths may inhibit each other from continued propagation (Pollard and Aydin, 

1988).  

Inhomogeneities in the ice are observed at structural boundaries in the ice shelf such as 

suture zones between adjacent former shear margins. Two conditions might occur:  

1. If the stress field changes within the suture zone, the stress intensity at the 

fracture tips may be reduced, leading to tip arrest or the formation of kinks as 

the direction of propagation adjusts to the new stress conditions.  

2. The fracture toughness of the material may change in response to softer ice 

(warmer or more highly fractured) or more brittle ice (colder). These conditions 

can further affect other material properties of the ice, such as the constants of 

elasticity. 

Finally, if driving stress is present within the fracture but propagation cannot occur at 

one endpoint, the fracture may grow at the other endpoint, propagating until the stress 

intensity falls below the fracture toughness of the material. Increased fracture length 

may also lead to (re-)initiation of the opposite fracture tip. 

 

2.1 Definitions 

 Some background on linear elastic fracture mechanics (LEFM), a branch of 

continuum mechanics, may aid the reader. Two types of forces act on a material: (1) 

body forces (e.g. gravity), which act equally on all elements of the material, and (2) 

surface forces (e.g. pressure and friction), which act along or across the surface of the 

material. Compared to the surface forces, body forces due to gravity acting upon the 
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low-slope, floating ice-shelf become insignificant and are ignored. The total stress 

acting on a plane within a material is a tensor ijσ , where , i j  are directions in a 

coordinate system. A Cartesian coordinate system with axes x , , and y z  is used here. 

In the present work, the y-axis is roughly aligned with ice flow (longitudinal) and the x-

axis is orthogonal to ice flow (lateral); the z-axis denotes the vertical direction of the 

floating ice shelf (thickness). Using this convention, xxσ  ( yyσ ) is the normal stress 

acting in the x-direction (y-direction) on the plane orthogonal to the x-axis (y-axis) and 

xyσ  is the shear stress acting in the x-direction on the plane orthogonal to the y-axis. 

The stress can be decomposed into shear stress components (e.g. sσ ) acting tangential 

to the surface and normal stress components (e.g. nσ ) acting normal to the surface. 

Materials deform according to the deviatoric stress ijτ , which is the difference between 

the total stress ijσ  and the mean normal stress , or overburden pressure. Strain P ijε  is 

a measure of the deformation in response to an applied stress. Remote stresses are far-

field stresses resolved over a length scale that is large compared to the fracture length. 

 The sign convention follows the tension-positive approach, commonly used for 

fracture mechanics and mixed-mode fracture growth. In the tension-positive 

convention, normal tensile stresses are positive and normal compressive stresses are 

negative. The greatest tensile stress is designated 1σ  and the least tensile stress is 

designated 2σ , for two dimensions. The sign convention for shear stresses is more 

complicated. Here, the sign of the outward normal to the face and the direction of the 

applied shear stress acting on the face determine the sign of the shear stress. For 
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example, a shear stress yxσ  acting on the plane whose normal is in the  direction 

and has stress applied in the 

y+

x+  direction is positive. 

 Elasticity constants describe the behavior of a material in response to loading and 

are integral to relationships between stress and strain (Hooke’s Law). The essential 

quantities used throughout the present work are defined here. The shear modulus μ  

describes the relationship between shear stress and strain, such that 2 xy xyμ σ ε= . The 

modulus of elasticity E  is a measure of the stiffness of a material, xx xxσ ε . Poisson’s 

ratio ν  is the ratio between contraction and extension in a deformed material, such that 

xx yyν ε ε= − . The bounds on Poisson’s ratio are 1 0.5ν− < ≤ . If the material is 

incompressible, 0.5ν =  (Davis and Selvadurai, 1996, p. 51).  

 

2.2 Assumptions 

 Fracture growth can be studied using linear elastic plane strain theory, which 

requires that certain assumptions be satisfied. A linear elastic material is assumed to be 

homogeneous, with material properties that do not vary spatially—it is isothermal and 

isotropic. The response of glacier ice to stresses within the material depends on the 

temperature, ice fabric, time scale, and other factors. At depth and on very long time 

scales (tens to thousands of years), glacier ice behaves as a ductile fluid, deforming 

viscously (Figure 2.3). Near the surface and on shorter time scales, glacier ice behaves 

elastically and undergoes brittle fracture at sufficiently large stresses. In the present 

work, our interest is in the elastic behavior of glacier ice on medium-length time scales 
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(days to months). That is, the growth of fractures (e.g. crevasses or rifts) in a floating, 

flowing ice mass.  

 
Figure 2.3. Zones of deformation within an ice shelf. 

   
 

 Although the ice shelf is three-dimensional, we are interested in fracture 

propagation in the horizontal directions. The vertical dimension is much smaller than 

the horizontal dimensions, allowing it to be neglected and a plane strain condition to be 

assumed (Figure 2.2). The plane strain assumption requires that the fracture geometry, 

material properties, and boundary conditions, including boundary tractions, do not vary 

in the vertical direction. Strain is taken to be zero in the vertical direction, while stress, 

due in large part to the overburden pressure, is nonzero. We assume that material 

properties are constant across the fracture for any given depth and that tidal 

displacement does not affect one side more than the other.  
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 The deformation of glacier ice on medium-length time scales (days or longer) can 

be described by fluid dynamics, a branch of continuum mechanics that studies fluid 

flow. Observational evidence supports the assumption that ice flow in the study area is 

steady with respect to time (Chapter 3). The steady-state assumption allows us to equate 

the evolution of a suite of fractures in space with the evolution of a single fracture in 

time. That is, the observed downstream fracture geometries represent the evolution of 

an arbitrary fracture as it advects through the ice shelf. We wish to understand the 

nature of the evolution in terms of response to the remote stress field and to the 

structure of the ice shelf.  

 

2.3 Governing Equations for Plane Strain 

 The governing equations of a plane strain problem are the equilibrium equations, 

compatibility equation, and constitutive relationships between stress and strain. These 

equations allow us to derive the biharmonic equation, which is the fundamental 

equation solved in elasticity problems.  

 Force balance is required by Newton’s second law of motion, which states that the 

rate of change of the momentum of a body is directly proportional to the net force 

acting on it, and the direction of the change in momentum takes place in the direction of 

the net force. Ignoring body forces, the equilibrium equations for two dimensions are: 
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 [2.1] 

The in-plane strains and displacements are related by: 

 1
2xx yy xy

u v u v
x y y

ε ε ε
⎛

x
⎞∂ ∂ ∂

= = = +⎜
∂

⎟∂ ∂ ∂⎝ ⎠∂
 [2.2] 

in which u and v represent the x- and y- components of velocity. The compatibility 

equation, which must be true for a continuous material, ensures that the material 

remains continuous following deformation, without holes or discontinuities. For two 

dimensions, the compatibility equation is: 

 
2 22

22 2
xy xx yy

x y x y
ε εε∂ ∂∂

= +
∂ ∂ ∂ ∂

 [2.3] 

(Muskhelishvili, 1963, § 15, p. 44). 

 The relationship between stress and strain in a homogeneous, isotropic, linear elastic 

material that meets the conditions of plane strain with independent elastic parameters 

(i.e. Hooke’s law) is: 

 

( )

( )

1
2
1

2
1

2

xx xx xx yy

yy yy xx yy

xy xy

ε σ ν σ σ
μ

ε σ ν σ σ
μ

ε σ
μ

⎡ ⎤= − +⎣ ⎦

⎡ ⎤= − +⎣ ⎦

=

 [2.4] 

(Muskhelishvili, 1963). 
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 This set of equations–two equilibrium equations ([2.1]), the compatibility equation 

([2.3]), and the stress-strain Hooke’s law relations ([2.4])–must be satisfied by the three 

in-plane stresses ( , ,xx yy xyσ σ σ ) for any solution of a plane strain problem. This system 

of equations and unknowns is computationally difficult. It is made simpler using an 

Airy stress function ( , )x yψ  (Airy, 1863) such that the equilibrium equations are 

satisfied: 

 

2

2

2

2

2

xx

yy

xy

y

x

x y

ψσ

ψσ

ψσ

∂
=
∂

∂
=
∂
∂

= −
∂ ∂

 . [2.5] 

Substituting the stress-strain relations ([2.4]) into the compatibility equation ([2.3]), and 

using partial derivatives of the equilibrium equations ([2.1]), the compatibility equation 

in terms of the in-plane stresses is: 

 ( ) ( )
2 2

2
2 2 0xx yy xx yyx y

σ σ σ σ
⎛ ⎞∂ ∂

+ + = ∇ + =⎜ ⎟∂ ∂⎝ ⎠
 [2.6] 

in which  is the Laplace operator. Using Airy’s definitions from 2∇ [2.5], the 

compatibility equation expressed in terms of the Airy stress function ψ  is: 

 4 0ψ∇ =  . [2.7] 

The solution to the plane strain problem lies in finding an appropriate biharmonic Airy 

stress function, examples of which can be found in elasticity handbooks (e.g., 
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Timoshenko and Goodier, 1969). Any stress function ( ),x yψ  that satisfies equation 

[2.7] is a solution to a plane strain problem. 

 

2.4 Stress Field near the Fracture 

 Stresses in terms of partial derivatives of harmonic functions in x  and  are not 

simple to solve. Muskhelishvili (1963) developed a method for solving plane strain 

problems using complex analysis. This method uses two analytical functions 

y

( )zϕ  and 

( )zχ  (Pollard and Segall, 1987) of the complex variable z x iy= + , where iz re θ= . The 

complex exponential function ie θ  is related to trigonometric functions by 

cos sinine n iθ nθ θ± = ± . The analytical functions are related to the Airy stress function 

by 

 ( ) ( )1
2 Re z z zψ ϕ χ⎡ ⎤= +⎣ ⎦  . [2.8] 

For pure mode I loading, (Westergaard, 1939) found that this solution could be reduced 

to a single analytical stress function ( )I zϕ . Sih (1966) introduced the function ( )II zϕ  

to account for pure mode II loading in the y-direction. The single fracture stress 

function , in which m represents the mode of loading, may be written (Pollard 

and Segall, 1987): 

( )m zϕ

 ( ) ( ) ( )1 21 2 2
1 2

i i
m m mz A r r e re B reθ θ iθ θϕ +⎡= −⎣

⎤ +⎦  [2.9] 

where for plane strain, 
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Here,  is the driving stress, which is the difference between the remote stress 

resolved on the fracture (superscript r) and the pressure at the fracture surface 

(superscript c).  represents the mean stresses, which can be taken as the contribution 

of the remote stresses in the absence of the fracture.  

mA

mB

 The fracture is represented geometrically using complex space and a tri-polar 

coordinate system (Figure 2.4), where 

 
( )
( )

22 2
1

22 2
2

r x a y

r x a y

= − +

= + +
 [2.11] 

and 

 
1
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θ
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−
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 . [2.12] 

In Figure 2.4, the fracture half-length, , is aligned with the a x -axis. The transformation 

equations for the complex variable z  are: 

 1

2

1

2

i

i

i

z re
z a re

z a r e

θ

θ

θ

=

− =

+ =

 [2.13] 

in which  and  correspond to the fracture endpoints.  1 0r = 2 0r =
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Figure 2.4 Tri-polar coordinate system illustrating the physical representation of the fracture system using 
complex analysis with the origin at the fracture midpoint. The line x a<  represents the branch cut that 

ensures that the analytical function ( )m zϕ  is single-valued for . Modified from Pollard and Segall 
(1987). 

1L

 

  is a multi-valued “function.” That is, using ( )m zϕ Figure 2.4 as a reference, the 

traversal of the path  includes all three origins and we find that, for an increase of 21L π  

in both θ  and ( )1 2 2θ θ+  (from Eq. [2.9]), ( )m zϕ  returns to its original value. Multi-

valued functions introduce discontinuities and are typically handled by constructing a 

branch cut in the complex plane. The origin 0 is the “branch point.” Because ln z is 

undefined for , where 0z = 1ze = , a branch cut is constructed between the origins 

 and  to limit the domain of log1 0r = 2 0r = z . The branch cut coincides with the 

discontinuity introduced by the fracture surface and ensures that the stress function 

 is single-valued throughout the domain. ( )m zϕ
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 Analytical solutions for the stress components ijσ  have been derived for specific, 

relatively simple geometries (e.g., Pollard and Segall, 1987). For the more complicated 

geometries and stress conditions observed in an ice shelf, numerical methods such as 

those developed by Crouch and Starfield (1983) are required (section 2.6). 

 

2.5 Stress Concentration near the Fracture Tip 

 In addition to evaluating the stress field near the fracture, we want to determine if 

the fracture will propagate and if so, the propagation direction. Stress intensity factors at 

the fracture tips are used to compute fracture propagation criterion. 

 The solutions for the stress field around a fracture break down near the fracture tip. 

Inglis (1913) first showed that stress concentration near the fracture tip depends on the 

shape of curvature of the region in which stresses are focused (Figure 2.5). The radius 

of curvature ℘ is derived from the equation for an ellipse so that 2b a℘= , where  is 

the total displacement across the fracture and  is the fracture half-length. Griffith’s 

(1921) analysis centered on minimizing the free energy of the fracture system. Irwin 

(1957) extended Griffith’s energy balance criterion to develop an approach that 

evaluates the stress intensity in the vicinity of a fracture tip. Stress intensity factors  

depend on the fracture geometry and applied loading, where the subscript m represents 

the mode of loading. Departing from Inglis’ elliptical study specimen, many of the later 

approaches (Irwin, 1957; Paris and Sih, 1965) are based on the “sharp slit” 

approximation (

b

a

mK

Figure 2.6). The “sharp slit” introduces a singularity at the fracture tip, 
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which is handled through the methods of complex analysis described in the previous 

section. The stress-intensity approach is limited to a neighborhood near the fracture tip 

with radius  (D Figure 2.6). 

 
Figure 2.5. Framework for the Inglis (1913) study of an elliptical flaw in a thin plate subject to uniformly 
applied stresses normal to the major axis of the flaw. 

 

 

 
Figure 2.6 Schematic of the region around the fracture tip where D is a measure of the size of the 
neighborhood around the fracture tip in which the stress-intensity approach is valid. Here,  represents 
the fracture half-length. Box indicates stress fields acting on an infinitesimal element at radial distance  
from the fracture tip and orientation 

a
r

θ  relative to the x-axis (stresses are positive). Modified from 
Kanninen and Popelar (1985, p. 141).   
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 The simple form of the analytical solution for stress components near the fracture 

tip is: 

 ( ) ( )1 22ij I ijK r fσ π θ−=  , [2.14] 

in which IK  is the stress-intensity factor for mode I fracture propagation and the 

distribution of the stress field is described by a radial component with 1 2r−  dependence 

and a function ( )ijf θ  that depends on the orientation of a given point with respect to 

the fracture plane (Irwin, 1957; Kanninen and Popelar, 1985; Lawn and Wilshaw, 1975; 

Pollard and Segall, 1987). These approximations have several limitations. Higher-order 

terms are omitted, making solutions valid only for the region in which the leading terms 

are dominant, or in a small region surrounding the tip. In a purely elastic or Hookean 

material, the stresses at the tip are singular, growing to infinity if the fracture exceeds a 

critical length. Most materials, however, experience a small amount of plastic 

deformation in the process zone, designated by the circle of radius R in Figure 2.7. If the 

process zone is small compared to the fracture length or to the distance between the 

fracture tip and the next open surface (radius D, the characteristic size of the outer 

boundary), then the LEFM approach applies and the simple form of the analytical 

solution in equation [2.14] is valid.  Pollard and Segall (1987) found that in the region 

in front of the fracture tip, the stresses approximated by equation [2.14] were within 

15% of real stresses for . For a fracture half-length of 5 km, typical for some 

fractures in this study, the radius for this region is approximately 50 meters.  

0.01r < a
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Figure 2.7  The stress intensity expansions given in Eq. [2.14] are valid for R << D within the “K-
dominant” neighborhood where D is the characteristic size of the outer boundary of this neighborhood. In 
this region, the leading terms of the expansions are dominant. The fracture criterion is not valid within the 
process zone enclosed by the white circle of radius R immediately surrounding the fracture tip. Diagram 
modified from (Kanninen and Popelar, 1985, p. 146).   

 

 To compute the stresses near the tip using Equation [2.14], the stress intensity factor 

Km must be calculated. The general form of the stress-intensity factor is:  

 m mdK aγσ π=  , [2.15] 

in which mdσ  represents the driving stress for mode m,  is the fracture half-length, and a

γ  is some constant parameter defined by the fracture geometry. The principle of 

superposition applies for the linear system so that stress-intensity factors for a given 

mode are additive. Analytical solutions for various specimen geometries are found in 

reference volumes such as Tada et al. (2000). Several simple fracture geometry 

specimens are shown in Table 2.1. 
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Table 2.1 Stress intensity factors for selected geometries subject to mode I loading (Sih, 1973; Tada et al., 
2000). 

Description Geometry Stress intensity factor 

Infinite solid with center 
fracture and constant tensile 
stress applied normal to 
fracture 

 

IK aσ π=  

Semi-infinite solid with edge 
fracture and tensile stress 
applied normal to fracture 

 

1.12IK aσ π=  

Double-ended center 
fracture in long plate of 
finite width 2w with tensile 
stress applied normal to 
fracture 

 

1
22 tan

2I
w aK a
a w

σ π
π
⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

For a w�  
1

2

sec
2I

aK a
w

πσ π ⎡ ⎤⎛ ⎞= ⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦
 

 

 The analytical solutions in Equation [2.15] require an evaluation of the driving 

stress but this quantity is difficult to calculate in most settings. Displacement of the 

material near the fracture and across the fracture surface, which occurs in response to 

the driving stress, is simpler to compute than driving stress. This displacement creates a 

discontinuity. One numerical method for approximating this is the displacement 

discontinuity method (Crouch and Starfield, 1983).  
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 Stress-intensity factors IK  and IIK  are computed using the maximum displacement 

at the active fracture tips (those allowed to propagate). In theory, maximum 

displacement  due to the mode of loading  occurs at the midpoint of the fracture 

element. The equation for maximum displacement, 

max iD m

 
( )2

max

4 1
m mdD a

E

ν
σ

−
=  , [2.16] 

can be solved for driving stress,  

 
( ) max24 1md m

E D aσ
ν

⎡ ⎤
⎢ ⎥=

−⎢ ⎥⎣ ⎦
 . [2.17] 

Here, the maximum displacements at the tip elements are calculated for each of the 

relevant modes of fracturing: 

 I n

II s s

D u u

D u u
n

− +

− +

= −

= −
  [2.18] 

in which  and nu su  are the displacements in the normal and shear directions that are 

computed using the displacement discontinuity method. Equation [2.17] is substituted 

into Equation ([2.17]): 

 
( ) max24 1m m

EK D
a
πγ

ν

⎡ ⎤
⎢ ⎥=

−⎢ ⎥⎣ ⎦
  [2.19] 
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in which IK  and IIK  depend on the maximums of ID  and IID , respectively, for the 

fracture and γ  is a constant parameter defined by the fracture geometry. In the present 

work, 0.806 2γ = − . 

 The  theory, formulated by Erdogan and Sih (1963), provides a method for 

evaluating mixed-mode fracture growth. Here, propagation is governed by the 

maximum circumferential tensile stress 

( )max
σ θ

( )max
σ θ  near the fracture tip. The ( )max

σ θ  

theory is: 

 ( )1 2 20 0 3
022 constant cos cos sin

2 2I IIr K Kθ
θ θσ π θ⎛= = − =⎜

⎝ ⎠
ICK⎞

⎟  [2.20] 

(Ingraffea, 1987, p. 92), where 0θ  is the angle of propagation for mixed-mode loading. 

Dividing by ICK , this is 

 20 0 3
021 cos cos sin

2 2
I II

IC IC

K K
K K

θ θ θ
⎛ ⎞

= −⎜
⎝ ⎠

⎟  , [2.21] 

The right side of [2.21] is evaluated for mixed-mode propagation. When it is equal to or 

exceeds 1, fracture propagation occurs. The fracture criterion in [2.21] requires the 

computation of 0θ , the angle of propagation for mixed-mode loading. This angle is 

derived from the condition that propagation occurs in the plane in which shear stress is 

zero: 

 ( )0
0 0cos sin 3cos 1 0

2 I IIK Kθ θ θ⎡ ⎤+ − =⎣ ⎦  [2.22] 
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(Ingraffea, 1987, p. 93). Ignoring the trivial solution, ( )0cos 2 0θ =  where 0θ π= ± , the 

more useful solution is: 

 ( )0 0sin 3cos 1 0I IIK Kθ θ+ − =  . [2.23] 

 The propagation direction equation may be simplified for different conditions. 

Under pure mode I loading, such that 0IIK = , the only condition under which 

propagation is aligned with the fracture plane occurs when: 

 0 0sin 0 0IK θ θ= → = o . [2.24] 

For pure mode II loading, where 0IK = , 

 
( ) ( )1 1

0 0 3

0

3cos 1 0 cos

70.5
IIK θ θ

θ

−− = → = ±

= − o
 [2.25] 

For mixed-mode loading, the condition of interest in the ice shelf, [2.23] is re-arranged:  

 0

0

sin
3cos 1

II

I

K
K

θ
θ

−
=

−
 . [2.26] 

The angle of propagation 0θ  for mixed-mode loading is: 

 ( )1 2
0

12 tan 2 2 8
8 I I II

II

K K K
K

θ − 2⎡ ⎤
= − − + +⎢ ⎥

⎣ ⎦
 . [2.27] 
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2.6 Displacement Discontinuity Method 

 
 The displacement discontinuity method is a boundary element method that 

approximates the stresses due to the presence of fractures within a material (Crouch and 

Starfield, 1983). This method has not previously been applied to ice shelf fractures but 

has been applied in other geologic contexts (Dahm, 2000; Olson and Pollard, 1989; 

Sempere and Macdonald, 1986). The software used in this study is C-based Frac2D 

(Thomas, 1991), which employs the displacement discontinuity method (DDM) 

presented in the TWODD software (Crouch and Starfield, 1983). The software was 

modified for an MS-DOS environment (Cruikshank, 2005, personal communication).  

 A fracture can be viewed as a series of point disturbances within a stress field. The 

fractures selected for this study have considerable length relative to the areal extent of 

the study area in the ice shelf, so the problem domain is treated as a finite region Q of 

variable size enclosed within a boundary  (1L Figure 2.8a). The constitutive equations 

introduced in section 2.3 describe the physics within the region Q (the “glaciological 

stress”). Analytical solutions can be written to describe the effect of each point 

disturbance on the stress field. These singular solutions are valid for every point within 

the region except the point of disturbance itself. The governing partial differential 

equations are linear so the complete solution is formed by summation of individual 

solutions. Because analytical solutions are easier to find for infinite plane problems than 

for finite plane problems, the boundary  is treated as a tracing contour 1L 1L ′  within an 

infinite plane (Figure 2.8b; Crouch and Starfield, 1983, p. 3-4). The sum of all singular 
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solutions should approximate conditions along the tracing contour 1L ′ , the model 

boundary.  

 

Figure 2.8 (a) Boundary  enclosing region Q and (b) boundary trace 1L 1L ′  within infinite plane. 
Modified from Crouch and Starfield (1983, p. 3).  

 
 

 Boundary elements are the framework through which stresses are simulated. 

Boundary conditions are specified by discretizing the model boundary and fracture into 

elements, which are defined by start- and end-points of straight-line segments, with 

shear and normal stresses sσ  and nσ  specified at the midpoints. These are hereafter 

referred to as the boundary stresses. Boundary elements are concatenated end-to-end 

(Figure 2.9). Each boundary element  i { }1i N∈ K  has a half-length of . Stresses are 

computed for other locations within the model domain using an observation grid 

composed of elements (observation stresses, not shown in 

ia

Figure 2.9).  
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Figure 2.9 Boundary element representation for model boundary in ice-shelf and for fracture. Model 
boundary: (a) physical method and (c) numerical method. Model fracture: (b) physical method and (d) 
numerical method. Modified from Crouch and Starfield (1983, p. 54, 87). 

 

 Complicated fracture geometries make it convenient to adopt a local reference 

frame for each boundary element. The local reference frame has its origin at the element 

midpoint ( xc , ) (yc Figure 2.10). For convenience, different coordinate systems are used 

to describe the local reference frames of boundary stresses and observation stresses, 
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based on input and output products. For boundary stresses, the x-axis is rotated so that 

the shear axis is aligned with the boundary element (positive in the direction of 

transversal) and the y-axis is rotated so that the normal axis is normal to the boundary 

element (positive in the outward direction). For observation stresses, which are 

expressed using the Cartesian coordinate system, and stresses computed using the 

analytical solution (Crouch and Starfield, 1983, p. 81), the local reference frame is 

defined by an x -axis (shear) and a y -axis (normal). The angle β  defines the 

orientation of the x  axis with respect to a global x-axis, positive in the counter-

clockwise direction. Coordinate displacements and stresses are transformed between the 

global and local reference frames.  

 Displacement discontinuities require two surfaces of the boundary element. If the 

boundary element of a fracture occupies , 0x a y≤ = , then the positive fracture 

surface is at 0y +=  and the negative surface is at 0y −= . Displacement discontinuities 

relative to the element are expressed as xD  and yD  ( sD  and nD ). They are assumed 

continuous everywhere except across the fracture and the change in displacement is 

assumed constant for any boundary element. By convention, negative yD  ( nD ) 

indicates that the fracture surfaces are moving away from each other (‘opening’) and 

negative xD  ( sD ) indicates that the positive fracture surface is moving to the left 

relative to the negative fracture surface (Figure 2.10).  
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Figure 2.10  Displacement discontinuity along arbitrarily oriented line, showing global and local 
reference frames. Modified from Crouch and Starfield (1983, p. 91). 

 

 It is assumed that each boundary element has uniform stress conditions and material 

properties, including constants of elasticity and fracture toughness ICK . The boundary 

stresses for each element i  and remote stresses for the model domain are transformed 

from the global to local reference frame using rotation transformation equations 

(Crouch and Starfield, 1983, p. 13): 
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= +

= − + β
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in which sσ  and nσ  represent the shear and normal stresses of the element. Remote 

stresses are removed, leaving boundary stresses sb  and  that are due to near-field 

stresses and the presence of fractures within the shelf.  

nb

 Because we consider the influence of each element on every other element, a new 

index j  is introduced to represent the element that is acting on another element i . The 

element j  must be transformed so that its midpoint coordinates ( ,j j )x yc c  are expressed 

relative to the local reference frame of the element i , which has origin ( ),i i
x yc c : 
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j i j j i j
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 . [2.29] 

Here, coordinates ( ,j j )x y  represent the midpoint of the transformed element with 

respect to element i and angle jβ  represents the orientation of the x  axis of element j  

relative to the global x -axis. The elemental displacement discontinuities ( ),
ij j

s nD D  

represent the change in displacement across an element  due to the influence of 

element 

i

j , where: 

 
j j j

s s s
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n n n

D u u
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− +

= −

= −
 . [2.30] 

Here, su  and  represent the shear and normal displacements for the positive and 

negative fracture surfaces. 

nu
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 Boundary stresses are simulated by evaluating the cumulative unknown shear and 

normal displacement discontinuities due to all boundary elements – fractures and the 

model boundary – on all other boundary elements. Each boundary element j  exerts a 

stress influence on each other boundary element i . This influence can be expressed 

through the combined terms of influence coefficients and displacement discontinuities. 

The length, orientation, and location of an element j relative to element i are used to 

compute influence coefficients: 

 
ij ij
ss sn
ij ij
ns nn

C C
C C
⎡ ⎤
⎢ ⎥
⎣ ⎦

 . [2.31] 

Each coefficient represents the shear or normal stress (first subscript) acting on the 

midpoint of the i th element due to a constant unit shear or normal (second subscript) 

displacement at the midpoint of the j th element. The relationship between boundary 

stresses sb  and , influence coefficients, and displacement discontinuities is: nb
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Using the principle of superposition, the cumulative influence of the shear and normal 

displacement discontinuities of all j  elements on the i th element is: 
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Equation [2.33] results in  simultaneous linear equations for  unknowns for each 

element . 

2N 2N

i

 The influence coefficient matrix is calculated in several steps (Figure 2.11). First, 

stress components are computed in the x , y  coordinate system using the analytical 

solution described in Crouch and Starfield (1983, p. 81). Because the local reference 

frame is not convenient for other computations, the stress components are returned to 

the global x, y system using the general transformation equations: 

 ( ) ( )

2 2

2 2

2 2
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 . (2.34) 

This results in a set of six influence stress components ( ij
xxsσ , ij

xxnσ , ij
yysσ , ij

yynσ , ij
xysσ , and 

ij
xynσ ) due to a constant unit shear or normal displacement discontinuity at element j, 

represented by the subscripts s and n for each component.  The shear or normal stress 

on each element i is computed using another coordinate transformation. Here, the 

influence stress components are transformed to shear and normal influence coefficients 

using Equation [2.28]. For example, the shear stress influence acting on the i th element 

due to the unit normal displacement discontinuity of the j th element is represented by 

ij
snC  using the transformation equation: 
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 The actual boundary stresses due to the influences of all boundary elements are 

computed by re-arranging Equation [2.33] and solving for the unknown displacement 

discontinuities. Once the actual displacement discontinuities ( j
sD  and j

nD ) are 

evaluated, only influence stress components ( ij
xxsσ , ij

xxnσ , ij
yysσ , ij

yynσ , ij
xysσ , and ij

xynσ ) are 

required to compute actual stresses. The full stresses for each boundary element  are 

obtained by returning the resolved remote stresses:  

i
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xx xx xxs s xxn n

i ij j ij j
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yy yy yys s yyn n
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P D

σ σ σ
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σ σ σ

= +Σ +Σ

= +Σ +Σ

= +Σ +Σ ij j

D

D

 . [2.36] 

Because j
sD  and j

nD  represent the cumulative shear and normal displacement 

discontinuities for boundary element j, new stresses can be computed for any location 

within the model domain. Influence stress components at the midpoints of boundary 

elements in the observation grid are computed using the analytical solution in Crouch 

and Starfield (1983, p. 81). Observation stresses are then obtained in the same manner 

as actual boundary stresses using Equation [2.36]. 
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Figure 2.11 Flowchart describing simulation of stresses using the displacement discontinuity method and 
FRAC2D software. 
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2.7 Model Validation 

 Validation experiments for the model were conducted with increasing complexity in 

the boundary conditions. A simple test is described. A single fracture was placed within 

a small box boundary. A uniform left-lateral stress field was created with no remote 

stress ( 0xxσ = , 0yyσ = , 0.5xyσ = −  MPa). Mean stresses due to the boundary stresses 

and the fracture were simulated using the displacement discontinuity method. Simulated 

mean stresses were consistent with expected results (Figure 2.12).  
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Figure 2.12 Validation of simple box with left-lateral shear ( 0xxσ = , 0yyσ = , 0.5xyσ = −  MPa). 
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3 Methods 

 
 The study area is in the Ronne-Filchner Ice Shelf, Antarctica. All data are obtained 

from available datasets and remote-sensed imagery. The model data include digitized 

fracture geometries and ice shelf stresses derived from velocity gradients and ice 

thickness. All data sets and derived products are presented in a polar stereographic 

projection with a standard latitude of 71S, central meridian at 0E, and origin at the south 

pole. Where necessary, data were interpolated to a regular grid with orthogonal x- and 

y-axes in a horizontal plane and 1-km grid spacing. Methods include a description of the 

ice shelf and structural map, derivation of stresses, model inputs, and model outputs. 

 

3.1 Ronne-Filcher Ice Shelf 

 The Ronne-Filchner Ice Shelf (Figure 3.1), the second largest ice shelf in 

Antarctica, is one of several large floating ice masses through which ice that discharges 

from the West Antarctic Ice Sheet flows. Together, these shelves have an area of 

487,000 km2 (Sandhager et al., 2004), slightly larger than the areas of Oregon and 

Washington combined. The Ronne Ice Shelf (RIS) lies to the west of Berkner Island, an 

ice rise separating it from the Filchner Ice Shelf. Six ice streams drain the West 

Antarctic Ice Sheet (WAIS) into the RIS – Evans, Carlson Inlet, Rutford, Institute, 

Möller, and Foundation Ice Streams. Ice velocities range from 200 m/year near the 

lateral margins to 1.4 km/yr near the center of the shelf front (Joughin and Padman, 
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2003). The study area extends through the outflow of the Evans Ice Stream from near 

the tip of the Fowler Peninsula to the shelf front. 

 
Figure 3.1 MODIS mosaic of Antarctica (Haran et al., 2005) showing Ronne-Filchner Ice Shelf. Berkner 
Island (upper center) separates the Ronne Ice Shelf to the west from the Filchner Ice Shelf to the east. 
Solid lines aligned with flow direction separate ice stream outflows. 

 

 The ice shelf is composed of ices of two origins—upper meteoric ice formed by 

snow accumulation, and lower accreted marine ice. The thickness of the RIS varies 

from more than 2000 m where the ice begins to float to between 50 and 200 m near the 
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seaward front (Lythe et al., 2000; Sandhager et al., 2004). Lateral differences arise due 

to spatial variations in ice inflow, basal melting, and strain rates. In general, ice thins as 

it flows toward the shelf front due to longitudinal stretching and basal melting. Basal 

melting is spatially variable but generally highest at the grounding lines. The fresh 

water released through basal melting rises buoyantly along the slope of the ice shelf. As 

it rises, the water becomes supercooled and refreezes, forming tiny platelets in the water 

column that accrete to the ice shelf base as marine ice (Jenkins and Doake, 1991). Near 

the shelf front, basal melting dominates and the marine ice layer thins to near-zero 

thickness.  

 The spatial distribution of this two-layer composition may have an effect on the ice 

rheology, which governs fracture propagation. However, for the fractures considered 

here, the influence of marine ice on lateral fracture propagation may be minimal. In the 

region immediately downstream of Fowler Peninsula, it is unlikely that crevasses 

penetrate the full thickness of the ice shelf; vertical arrest likely occurs above the 

marine ice layer. Nearer to the shelf front where rifts penetrate the full ice thickness, 

marine ice is largely absent due to basal melting processes.  

 

3.2 Structural Map 

 A feature map of the Ronne-Filchner Ice Shelf (Figure 3.2 Figure 3.3) was 

developed from the MODIS Mosaic of Antarctica (MOA) image map (Haran et al., 

2005; grid scale 125 m). The mosaic is a composite of MODIS images taken between 

20 November 2003 and 29 February 2004. The resolution and use of many images with 
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different sun illumination angles used to construct the MOA made it possible to trace 

many features, including large fractures, streaklines, and former shear margins. 

Streaklines are surface undulations that originate in the grounded ice sheet as ice flows 

over variations in basal traction, or relief. The feature map provides a flow history over 

hundreds of years in the ice shelf, and delineates flow provenance through the mapping 

of distinctive flow features observed in outlet glaciers and ice streams.  

 Fractures, streaklines, and relict margins were digitized using Adobe Illustrator. 

Streaklines appear as shadows cast along their flanks. Fractures appear either as sharp, 

sunlit/shadowed faces or as shadows cast within sagging snow bridges (Merry and 

Whillans, 1993). Small fractures, or those well-covered by snow, are not visible. The 

closely-spaced fractures in a chaotic shear margin leave a signature in the shadows cast 

along the margin track (Merry and Whillans, 1993). Slope breaks, such as at the 

margins of ice rises, are also visible as shadows cast along the feature trace. Features 

were digitized at the dark/light boundary. All fractures were digitized at 5x 

magnification. All other features including boundaries, ice rises, streaklines, and 

grounding lines, were digitized at 2.5x magnification. The digitized points were 

assigned coordinates in the MOA projection. Features are in general agreement with the 

USGS map of Antarctica (Ferrigno et al., 2005). 
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Figure 3.2 Digitized structural map of Ronne-Filchner Ice Shelf, based on MOA (Haran et al., 2005). 
MODIS image visible under digitization overlay. 
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Figure 3.3 Digitization of structural map, based on MOA (Haran et al., 2005). (a) Structural boundaries. 
Solid lines separate ice from different ice streams (major suture zones), dash-dotted lines represent former 
shear margins, light dotted lines represent other streaklines, and the solid lines transversing ice streams 
represent the inferred grounding lines. (b) Fracture geometries. (c) Structural boundaries and fractures. 
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Evans Ice Stream 

 The Evans Ice Stream is the fastest-flowing outlet glacier entering the RIS and has 

the largest influx of ice, 35.7 ± 3.6 Gton/yr (Joughin and Padman, 2003). The drainage 

basin of the Evans Ice Stream includes ice flowing from the mountains of Ellsworth 

Land, of which the Drewery Ice Stream feeds the Evans, and ice originating near the ice 

divides with the Pine Island Glacier and Rutford Ice Stream (Figure 3.4). 

 
Figure 3.4 Evans Ice Stream drainage basin drawn over the MOA with Radarsat Antarctic Mapping 
Project Antarctic Mapping Mission 1 amplitude image, based on delineation of Rignot (2001) with 
updates from the present work.  
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 Five primary tributaries of the Evans Ice Stream are identified, labeled from west to 

east (Figure 3.5 and Figure 3.6). Tributary 1: Ice flows south from the mountains to 

form the westernmost shear margin of the Ronne Ice Shelf. While the upper tributary 

has a relatively small ice flux to the shelf, ice flows into it from outlet glaciers on the 

Orville and Lassiter Coasts (Figure 3.2). Tributary 2: The Drewery Ice Stream flows 

south from the mountains of Ellsworth Land. Tributary 3: This tributary flows east with 

two substantial relict shear margins. To the west, the ice flows past a topographic high 

before aligning with its neighboring tributary, the Drewery Ice Stream. To the east, ice 

flows along a prominent grounded feature, generating a strong shear zone with tributary 

4. Tributary 4: Ice flows north from the ice divide (part of the WAIS) before abruptly 

turning east. Tributary 5: This tributary contains outflows from the eastern shear 

margin of the Evans Ice Stream (5a) and from outlet glaciers on the Hagg Nunataks and 

between this feature and the Fowler Peninsula (5b). Where the tributaries coalesce, their 

lateral shear margins form “suture zones” visible in the MOA. The suture zones are 

highly fractured and form structural boundaries in the ice. They may be traced from the 

grounding line into the ice shelf.  
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Figure 3.5 Ice flow near the grounding lines of the Evans Ice Stream (EvIS), Talutis Inlet (TI), Carlson 
Inlet (CI), and Rutford Ice Stream (RuIS). Tributaries of the Evans Ice Stream are numbered. Dash-dotted 
lines represent former shear margins, light dotted lines represent other streaklines, and the solid lines 
transversing ice streams represent the inferred grounding lines. 

 

 The Evans outflow passes through a narrow, tectonic gap (Jones et al., 2002; King 

and Bell, 1999) where it joins with another tributary as the ice begins to float. 

Observations of downstream fracture geometry suggest that the suture zone between 

these two inflows (the 3/4 suture zone) is an important structural boundary. The 

grounding line is traced at the transition from a relatively hummocky to relatively 
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smooth surface, indicating the transition from flow over a rough bed to flow over water. 

Within ~30 km of the grounding line, tributary 4 ice is compressed laterally to less than 

20% its width at the grounding line. A prominent subglacial meltwater stream is 

expressed as a sinuous depression in the ice surface. Prominent crevasses are observed 

through this region. Downstream of the Fowler Peninsula, another important suture 

zone forms with the outflow of the Carlson Inlet.  

 Suture zones appear to be important structural boundaries in the ice shelf. They are 

observed to both initiate and arrest the propagation of large rifts. Perturbations of the 

fracture traces are observed where shelf-front rifts intersect these boundaries (Figure 

3.6). These perturbations may be the result of differences in material properties of the 

ice. The suture zone between the Evans and Carlson Inlet flows is not breached by 

fractures until within 50 km of the shelf-front.  
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Figure 3.6 Notches in fractures near the shelf-front are interpreted as evidence of episodic fracture 
growth. These notches appear at changes in material properties of the ice.  

 
 

 The set of large, transverse fractures near the western front of the RIS (Figure 3.6) 

can be traced upstream if ice flow is assumed to be steady over the lifetime of ice 

moving from the grounding line to the shelf front. Agreement between flow features 

and velocity azimuths (Figure 3.7) make this a good assumption (Fahnestock et al., 

2000). Tracking these features upstream allows their propagation history to be explored. 

The first step in that study is the classification of provinces with distinct fracture 

patterns within the Evans Ice Stream outflow (Figure 3.8). The provinces provide 

context in which to examine the growth of the large, through-cutting rifts.  
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Figure 3.7 Flow features and velocity vectors in the outflow of the Evans Ice Stream. 
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Figure 3.8 Digitized features in the outflow of Evans Ice Stream. 
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 Province A is a chaotic region downstream of the grounding line. It is characterized 

by arcuate crevasses, intersecting crevasses, and relict shear margins (Figure 3.5). Shear 

margin fractures develop in tributary 3 at the inboard side of the 3-4 suture zone, and 

become less prominent with increasing distance from the grounding line.  

 Province B, downstream of Fowler Peninsula, has clearly defined shear margin 

fractures in tributary 4 along both margins (Figure 3.9). These younger, closely-spaced 

(1-2 km), upstream-pointing fractures develop in the wake of Fowler Peninsula, 

overprinting older crevasses. Near the downstream end of this province, the eastern 

fracture tips are observed to have ~1km growth normal to ice flow before crack tip 

arrest. 
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Figure 3.9 Digitized features in the outflow of Evans Ice Stream, showing provinces B and C. 

 
 

 In Province C, shear margin fractures at the 4/5 suture zone begin propagating east, 

normal to ice flow before arresting at the Evans-Carlson suture zone (Figure 3.9). The 

location is important because we can infer that a significant change in the stress field 

must occur here, driving the observed propagation. The 4/5 suture zone becomes an 
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important structural boundary. For over 100 km downstream of the first observed crack 

tip arrest at the Evans-Carlson suture zone, the fractures do not propagate westward 

through the 4/5 suture zone.  

 In Province D, the 4/5 suture zone is breached by a few large fractures, which 

propagate to the west (Figure 3.10). Apparent fracture spacing increases as fractures 

grow (10-20 km separation at the upstream end and 20-50 km separation at the 

downstream end). These larger fractures dominate the local stress field near the shelf 

front. It is inferred that nearby fractures become passive features and fill in with 

blowing snow. Near the shelf front, the largest fractures exceed 100 km in length. 

 
Figure 3.10 Digitized features in the outflow of Evans Ice Stream within province D. 
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3.3 Observed Ice Flow Used to Compute Stresses 

 Fractures grow according to the principal stress directions and the stress intensity at 

the propagating tip. These can be estimated using measured velocity gradients (strain 

rates) and an estimated flow-law rate factor. 

Velocity Data and Strain Rates 

 Gridded ice velocity from Ian Joughin (UW Applied Physics Laboratory, personal 

communication, 2005; grid scale 1 km) was used to derive strain rates in the ice shelf. 

Infinitesimal strain rates were computed as gradients of the velocity field, which is a 

valid approximation for small displacement gradients. The infinitesimal strain rate 

tensor ijε&  is expressed in terms of the partial derivatives of the velocity vector iu : 
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The uncertainty in this simplification is the sum of the effects of the omitted higher-

order terms. Mean velocity gradients were computed using differences along 

quadrilateral edges (Figure 3.11). For example,  
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in which xΔ  represents the spatial change in the x-direction and n, m are the respective 

indices for x, y. Strain rates for the quadrilateral centroid were obtained by taking the 

mean of the velocity gradients on opposite sides of the quadrilateral. For example,  
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Figure 3.11 An example quadrilateral in the gridded velocity data set. Differences may be computed 
along edges of the quadrilateral or across diagonals. The resulting mean gradients apply at the centroid. 

 

Other components of the strain rate tensor, for two dimensions, were computed in a 

similar manner. A mean shear strain rate xyε&   was obtained by averaging xyε&  and yxε&  for 

each centroid node: 
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The effective strain rate provides a general reference for the magnitude of deformation 

in the flowing ice (Figure 3.12). The effective strain rate eε&  for two dimensions was 

computed: 
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 The velocity data contain a non-random error that is an artifact of the 

interferometric technique used to compute velocities (Figure 3.13a). This non-random 

error was enhanced by the strain-rate calculations and manifests as banding in the strain 

rate amplitude (Figure 3.13b). The effect of this error was minimized by smoothing the 

raw velocity data using MATLAB’s fspecial function and a running average (Figure 

3.14). Several filter dimensions were tried and a 20 km square was the smallest useful 

smoothing window. The effect of the error was reduced but not removed (Figure 3.13c 

and Figure 3.13d).  
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Figure 3.12 Effective strain rate map. The effective strain rate, which represents large-scale deformation 
within the ice shelf, was computed using Equation [3.5].  
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Figure 3.13  Small variations in observed speed (a) due to the interferometric technique are enhanced by 
strain rate calculations, leading to substantial noise in strain rates. The effective strain rate is shown here 
(b). A running average smoothing filter of 20-km x 20-km was applied to the velocity data (c and d). The 
fracture trace and suture zones drawn in each panel are for reference only. 
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Figure 3.14 Velocity map filtered using a 20-km x 20-km smoothing filter, based on measured ice 
velocity (Ian Joughin, personal communication). The stippled regions near the shelf boundaries represent 
data loss due to the velocity smoothing technique. 
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Deviatoric Stresses 

 Strain rates are related to deviatoric stresses in the ice according to a constitutive 

relation often called a flow law. The rate at which ice deforms depends on its 

temperature, and other less well-understood parameters. Nye’s generalization of Glen’s 

flow law for glacier ice (forward flow law) is: 

 1n
ij e ijAε τ τ−=&  , [3.6] 

in which A  is the temperature-dependent flow law rate factor, n is typically taken as 3, 

ijτ  is deviatoric stress, and eτ  is the effective deviatoric stress, a scalar quantity (Hooke, 

1998, p. 14-15; Nye, 1953, 1957). The ice is assumed to be incompressible and 

isotropic. To derive stresses using computed strain rates, the inverse flow law is used: 

 
1 1n

ij e ijBτ ε ε−= & &  , [3.7] 

in which B is the inverse rate factor and eε&  is the effective strain rate.  

 The constitutive relation cannot be frame dependent. That is, the strain rates in a 

given direction within glacier ice depend not only on the stresses acting in that direction 

but also upon the stress state as a whole. Thus, the forward and inverse flow laws 

involve the products, 1n
e ijτ τ−  and 

1 1n
e ijε ε−
& & , respectively, in which the effective strain rate 

eε&  is defined in [3.5] and the effective deviatoric stress eτ , for two dimensions, is 

defined: 
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⎝ ⎠

 . [3.8] 

 The rate factor is a measure of the viscosity of the ice and depends on temperature, 

ice fabric, and other factors. Using the velocity data set in the present work, Larour et 

al. (2005) employed an inverse control method to infer B for the Ronne Ice Shelf. 

Across the RIS, depth-averaged B was found to vary between 300 and 900 
1

3kPa a , 

with an average value of 760 
1

3kPa a  at the western front of the ice shelf. In the present 

work, a uniform value of 760 
1

3kPa a  is used.  

 

Principal Stresses 

 Principal stresses 1σ  and 2σ  represent the greatest and least normal stresses, 

respectively, on a surface. Principal stresses may be extensive or compressive; shear 

tractions are not present. Mode I fractures have maximum displacement in the direction 

of most extensive principal stress and propagate orthogonal to this direction. In the 

present work, principal stresses are derived using deviatoric stresses, which better 

represent the stress magnitudes that affect deformation within the ice but do not modify 

the principal stress directions.  

 Principal stresses and directions must satisfy the eigenvalue problem: 

 ( ) }0 1,2ij n nI nτ λ− = =x  [3.9] 
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in which 1λ  ( 2λ ) represents the maximum (minimum) principal stress magnitude and 

1x  ( 2x ) is the vector corresponding to the respective principal stress direction. Written 

out, equations for the individual components are:  

 
2

2
1 2 2

xx yy xx yy
xy

τ τ τ τ
τ τ

+ −⎛ ⎞
= + +⎜ ⎟

⎝ ⎠
 [3.10] 
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2 2 2

xx yy xx yy
xy

τ τ τ τ
τ τ

+ −⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
 [3.11] 

 1

2
tan 2 xy

xx yy

τ
θ

τ τ
=

−
 . [3.12] 

in which 1θ  is the principal stress direction for 1τ . 2θ  is orthogonal to 1θ . 

 

Full Stresses 

 The full glaciological stress is the sum of the deviatoric stress and the lithostatic 

stress: 

 1
3ij ij kk ijσ τ σ δ= +  , [3.13] 

in which repeated indices are understood to be summed and ijδ  is the Kronecker delta. 

The mean normal stress is taken to be the overburden pressure, 

 ( ) ( )0
sz

z
P z P g z dzρ= + ∫  [3.14] 
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in which 0P  is the surface pressure, ρ  is the ice density, g  is acceleration due to 

gravity, sz  is the surface elevation, and z  is the depth below the surface. For the 

present work, a single mean value was required at each grid point. The engineering 

hydrodynamics practice of using 2
3  the ice thickness was followed such that  

 ( ) 2
3,P x y gHρ=  [3.15] 

in which H is the ice thickness and the depth-integrated density ρ  is 910 kg m-3 (Figure 

3.15). Ice shelf thickness H was obtained from the BEDMAP data set (Lythe et al., 

2000). The data were interpolated using cubic interpolation to match the 1-km grid 

spacing of stresses (Figure 3.16).  Conservation of angular momentum requires 

symmetry in the stress tensor ij jiσ σ= . Thus, the expanded full stress tensor is 

 
( )

( )

1
2

1
2

2
9

2
9

xx xy yx
xx xy

xy yy
xy yx yy

gH

gH

τ ρ τ τσ σ
σ σ

τ τ τ ρ

⎡ ⎤+ +⎢ ⎥⎡ ⎤
= ⎢ ⎥⎢ ⎥
⎢ ⎥⎣ ⎦ + +⎢ ⎥⎣ ⎦

 . [3.16] 
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Figure 3.15 Side view of an ice shelf of non-uniform thickness (after Paterson, 1994, p. 293). The 
stippled area represents the upper two-thirds of the ice-shelf. H(x) is the ice thickness, h(x) is the surface 
elevation above sea level, and ρ  is the depth-integrated ice density.  
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Figure 3.16 Ice thickness map of western Ronne Ice Shelf from BEDMAP (Lythe et al., 2000). Solid lines 
aligned with the flow direction separate different ice stream outflows. From left to right (west to east), the 
ice stream outflows are Evans, Carlson Inlet, Rutford, and Institute. 
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3.4 Model Inputs  

 Model inputs include boundary elements, boundary and remote stresses, elasticity 

constants, fracture toughness, and an observation grid.  

 

Discretization of Model Domain 

 Each boundary element is defined using beginning and ending x- and y- coordinates 

in the global Cartesian reference frame. The boundary discretization required a step size 

greater than the grid spacing of computed stresses. Experiments showed that the 

minimum step size for boundary elements should be twice the grid spacing, or about 2 

km. Discretization was automated using the step size and length of a model domain side 

or of a fracture boundary element. The selection of boundary geometry was guided by 

fracture geometries, principal stresses, material boundaries, and the spatial resolution of 

data sets. The DDM permits any geometry for the outer boundary. To minimize 

memory requirements, a simple box geometry was imposed with specified corner 

coordinates. Boundaries were selected to minimize the effects of the residual (after 

smoothing) non-random error in the stress field.  

 Two MATLAB tools, customizable through user input, were developed to facilitate 

experiment design. One tool provides a preview of the model domain or surrounding 

region, showing mean stress, components of the stress tensor, principal stresses, 

effective strain, or ice thickness, with an overlay of fracture geometry and ice shelf 

structural boundaries (preview_boundary.m, Appendix C). The other tool generates 
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boundary elements, computes fracture and boundary stress conditions, and generates the 

model domain grid required by Frac2D (get_export.m, Appendix C).  

 

Boundary Stress Conditions 

 Boundary stress conditions must be specified such that modeled stresses throughout 

the domain resemble stresses in the ice shelf and in some cases, to determine the stress 

magnitude required to initiate propagation. To accomplish these objectives, principal 

deviatoric stresses { }1 2,τ τ  may be scaled: 

 { } { }1 2 1 2new
, ,τ τ τ τ= ℑ×  [3.17] 

in which ℑ  is the scaling factor. This method does not change the orientations of 

principal axes.  

 The scaling of deviatoric stresses during model initialization implicitly scales the 

full stresses as well. The full normal stresses are modified by amounts that are typically 

less than the scaling factor ℑ  (Table 3.1, Table 3.2). The effect on longitudinal stresses 

is greater due to the relatively greater magnitude of yyτ  compared to xxτ  in the ice shelf. 

The effect on yyσ  of reducing principal stresses by a factor ℑ  can be approximated by:  

 { }
new

1
2yy yyσ σℑ+⎛ ⎞= ⎜ ⎟

⎝ ⎠
 . [3.18] 

The effect on xxσ  depends on the sign and magnitude of the deviatoric stress xxτ . If xxτ  

is positive, then reducing it will decrease xxσ  by a small amount, typically 1-2%. xxσ  
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will increase by a similar amount if xxτ  is negative. The stress conditions for a boundary 

element are obtained for the midpoint of each element by averaging the stresses at the 

grid points nearest to the start and end coordinates of the element. Several other 

averaging methods were tried but did not improve the approximation of mean stress 

conditions for the midpoint. The stress tensor for the midpoint is resolved to the plane 

of the element by transforming it to shear and normal stresses acting on the boundary 

element.  

Table 3.1 Example of stress magnitude changes for a location of minimal shear and positive xxτ , using 
different scaling factors. (The data were taken from a grid point in the western part of the model domain 
for Experiment 2; Figure 4.9). 

 factor 1τ  2τ xxτ yyτ xyτ  xxσ  yyσ
1.00 1196 138 144 1191 -78 1187 2234
0.90 1077 124 129 1072 -70 1172 2114

Stress 
Magnitude, 
kPa 0.85 1017 117 122 1012 -66 1165 2055
 0.80 957 111 115 953 -62 1158 1995
 0.75 897 104 108 893 -58 1151 1936
 0.70 837 97 101 833 -54 1144 1876
           
           

 90 90 90 90 90 99 95Percent 
Change, %  85 85 85 85 85 98 92
  80 80 80 80 80 98 89
  75 75 75 75 75 97 87
  70 70 70 70 70 96 84
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Table 3.2 Example of stress magnitude changes for a location of strong shear and negative xxτ , using 
different scaling factors. (The data were taken from a grid point in the eastern part of the model domain 
for Experiment 2; Figure 4.9). 

 factor 1τ  2τ xxτ yyτ xyτ  xxσ  yyσ
1.00 1187 -441 -179 925 -599 747 1851
0.90 1068 -397 -161 832 -539 765 1758

Stress 
Magnitude, 
KPa 0.85 1009 -375 -152 786 -509 774 1712
 0.80 950 -353 -143 740 -479 783 1666
 0.75 890 -331 -134 694 -449 792 1620
 0.70 831 -309 -125 647 -419 801 1573
          

  90 90 90 90 90 102 95Percent 
Change, %   85 85 85 85 85 104 93
   80 80 80 80 80 105 90
   75 75 75 75 75 106 88
   70 70 70 70 70 107 85
 
 
 

Remote Stresses 

 Remote stresses for a given boundary were approximated by averaging stresses 

interpolated to the boundary from the computed stress field. Comparison with the mean 

boundary stresses distal to the problem domain showed agreement with the 

approximation obtained using the immediate boundary, indicating that the mean, or 

occasionally the median, of the immediate boundary was an adequate representation of 

large-scale remote stresses. The remote stresses xxM , xyM , and yyM  are assumed to be 

constant at all locations within the model domain.  
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Calibration of Elasticity Constants 

 The elasticity constants for ice were calibrated so that modeled stresses resemble ice 

shelf stresses. Values from the literature (Hutter, 1983; Mellor, 1975; Rist et al., 1999; 

Rist et al., 2002) for the modulus of elasticity E range from 8000 to 10,000 kPa (rubber 

is ~100 kPa) and for Poisson’s ratio range from 0.3 to 0.33 (a perfectly incompressible 

material is 0.5).  These values form the initial estimates from which calibrations were 

made. Changing one parameter at a time and holding all other conditions constant, the 

stress field was simulated in the absence of a fracture. The root-mean-square error 

(RMSE) of mean stresses was used to determine the best fit of parameters. This method 

was consistent with a visual comparison between observed and simulated mean stresses. 

In the present work, typical calibrated values are 0.27 and 0.28 for Poisson’s ratio and 

7500 and 8000 kPa for the modulus of elasticity. 

 

Fracture Toughness 

 Fracture toughness mCK  is a material property representing the critical stress 

intensity factor beyond which a fracture of mode m  propagates. Values from the 

literature suggest that ICK  for ice-shelf ice ranges from 0.1 – 0.3 MPa m1/2 (Rist et al., 

2002).  
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Stress Conditions within Model Domain 

 Stress conditions were calculated at specified points within the model domain. The 

Frac2D program was not able to handle large, skewed grids due to memory 

requirements. Thus, a simple box geometry was adopted for the observation grid. Grid 

spacing was 0.5 km x 0.5 km.  

 

3.5 Model Outputs 

 Model outputs include stress intensity factors IK  and IIK  for each active fracture 

tip, propagation angle 0θ , failure criteria leading to mixed-mode propagation, and stress 

conditions for the boundary, fracture(s), and specified observation grid points.  

 

Fracture Propagation 

 Fractures grow according to principal stress directions in the region of the fracture 

and the stress intensity at the propagating tip. Following each iteration, propagation 

criteria for each active tip are evaluated. Propagation of a single-mode fracture is 

predicted by comparing the tip stress intensity factor mK  and the fracture toughness, 

mCK . A mode I fracture will propagate whenever I ICK K> , as long as the process zone  

is small compared to the length of the fracture (Figure 2.6). When these conditions are 

no longer satisfied, propagation will cease. For mixed-mode propagation, fracture 
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growth depends on IK , IIK , and ICK . The stress intensity factors were computed using 

Equation [2.19]. The propagation criterion (Equation [2.21]) and the angle of 

propagation (Equation [2.27]) were computed using the maximum circumferential 

tensile stress theory. 

 Modeled fracture propagation occurs by incremental growth at the fracture tips 

following each iteration of computations. If the stress field is unchanged, each fracture 

increment begins at the previous element tip and grows in the same orientation. If the 

stress field changes, the orientation of the fracture increment adjusts to minimize shear 

loading. A method described by Ingraffea (1987, p. 99-100) for approximating the 

fracture increment length is employed. The fracture is allowed to propagate some 

amount aΔ  in the direction 0θ , where aΔ  is 2a. If multiple iterations are performed, 

the fracture may grow incrementally. At each iteration step, the stress-intensity factors 

are recomputed. Time rate of propagation is not computed. 

 

Viewing Changes in Simulated Stress Conditions 

 Two MATLAB tools were developed to read, plot, and archive model results. One 

tool reads the text-based model results for each iteration, computes mean, deviatoric, 

and principal stresses from the modeled full stresses, separates original and incremental 

fracture elements, archives the model results by iteration number in auto-generated 

MATLAB data files, and plots mean or principal stresses (read_output.m, Appendix 

C). The other tool plots a number of variables (mean stresses, components of the stress 
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tensor, principal stresses, maximum shear stress, theta) for a specified iteration step 

using a shade-colored plot, contour plot with manual labeling, or principal directions 

plot (plot_data.m, Appendix C).  

 

 



4 Experiments 

 

 The importance of structural boundaries in crack tip arrest is investigated by 

modeling the propagation behavior of fractures at distinct steps in their downstream 

evolution, identified by provinces of similar fracture geometry in the ice shelf (Figure 

3.8). In the outflow of the Evans Ice Stream, fracture geometry is defined by (1) an 

upstream-pointing segment that initiates in the shear zone of an ice stream or an ice 

stream tributary, and (2) a transverse segment that develops as the fracture advects 

through a stress field favorable to propagation normal to ice flow (Figure 4.1).  

 
Figure 4.1 Fracture geometry is defined by an upstream-pointing segment, formed along a shear margin, 
and a transverse segment, formed as the fracture advects through a different stress field. 

 

 Propagation behavior is simulated to better understand controls on crack tip arrest 

and test the hypothesis that structural boundaries are important in the Ronne Ice Shelf. 

Experimentally-derived values for ICK  in Antarctic shelf ice range from 0.1 to 0.3 MPa 

m1/2, with some scatter at shallow depths resulting in anomalously high values (Rist et 
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al., 2002). Rist et al. (1999) observed an approximately linear relationship between ice 

density and fracture toughness: 

 ( )1
20.257 80.7 kPa mIC iK ρ= −  [4.1] 

so that full density KIC = 0.155 MPa m1/2 for the ice specimens of the study. For the 

present work, values for KIC were 0.1, 0.15, and 0.3 MPa m1/2. Following each iteration, 

the boundary stresses are re-computed. If the stresses encountered at the fracture tip are 

favorable to mixed-mode propagation, incremental growth occurs, which modifies the 

fracture geometry for the subsequent iteration. The iterative calculation is used only to 

simulate fracture geometry; there is no time component in the model. The longer a 

fracture becomes, the more likely it is to continue propagating in a given stress field. 

Several mechanisms may limit fracture growth: interaction among adjacent fractures, 

fracture length, inhomogeneities in the ice, and near-field stresses. In the present work, 

propagation is described as unstable if the fracture does not arrest until reaching the 

edge of the model domain. It is described as episodic if the fracture arrests and re-

initiates when the stress field changes or fracture length increases during a simulation.  

 Five experiments, differentiated by location, test objectives, and fracture geometry, 

are described here (Figure 4.2). Test fractures, which are based on observed fracture 

geometry, are located in transitional zones between provinces of similar fracture 

geometry. Test fractures and, if appropriate, the observed fractures on which they are 

based, are mapped with principal deviatoric stresses (Figure 4.3). 
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Figure 4.2 Overview map of experiment locations in the Evans Ice Stream outflow of the Ronne Ice 
Shelf. 
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Figure 4.3 Principal stress orientations and relative magnitudes (red: extensive, cyan: compressive). 
Fracture labels at right correspond to dark lines in map representing test fractures. 
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4.1 Experiment 1 

 In province B, closely-spaced (1-2 km) fractures develop along the 4/5 suture zone 

in the wake of Fowler Peninsula (Figure 4.2). As these fractures advect downstream to 

the location of Experiment 1, some rotation occurs, the upstream-pointing segments 

become less visible in the satellite imagery, and the outboard geometry changes, with 

~1 km growth observed normal to ice flow. Downstream of this location, propagation of 

the transverse tip is observed. The objectives of this experiment are: (1) to determine if 

the upstream-pointing fracture tip is active at this location, and (2) to find the stress 

conditions required to make the transverse tip grow. If the predicted growth orientation 

of the upstream-pointing fracture segment differs from the observed fracture geometry, 

it is reasonable to assume that the tip is inactive and that tip arrest must have occurred 

somewhere upstream. 

 Experiment 1 is located at the downstream end of province B in the ice shelf (Figure 

4.4a). Test fracture k1 is identical to an observed fracture but is shortened by ~8 km on 

its upstream-pointing, western side (Figure 4.4b). Both fracture tips are allowed to 

propagate. The principal stress map shows that test fracture k1 is located ~10 km 

upstream of a zone of compression and increasing shear stress (Figure 4.5). In general, 

extensive stresses are observed to the west of the model boundary. The model area is 

624 km2.  
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Figure 4.4 (a) Location of Experiment 1 in the ice shelf highlighted by solid box. (b) Model boundary 
showing test fracture k1. The dots along the model boundary mark endpoints of the boundary elements. 
Suture zones formed between ice from different tributaries are marked by dash-dotted lines and the suture 
zone between outflows of the Evans and Carlson Inlet Ice Streams is marked by a solid cyan line. 
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Figure 4.5 Experiment 1: Principal stress orientations and relative magnitudes (red: extensive, cyan: 
compressive). The trace of test fracture k1, model boundary, and suture zones are for reference only. The 
2/3, 3/4, and 4/5 suture zones and ice stream outflows are labeled.  

 

Experiment Calibration 

 The elasticity constants were calibrated for this location in the ice shelf by 

simulating stress conditions in the model domain in the absence of a fracture. The 

calibration for this location required satisfying two criteria: (1) to represent the overall 
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east to west increasing stress gradient, and (2) to replicate the observed mean stress 

magnitudes (Figure 4.6a). These are hereafter referred to as the general calibration 

criteria. The spatial stress gradients were most influenced by changes to the elasticity 

constants. The modulus of elasticity E varies with softening due to the strain history, 

depth, and other factors. Other studies with values similar to this study include Rist et 

al., (2002; E = 9000-1000 MPa near the central front of the Ronne), Hutter (1983; E = 

9200-9400 MPa, v=0.314 in lab studies), and Stephenson (1984; E = 9000 GPa in field 

studies). Different values of E can be found in Vaughn (1995). Throughout the 

literature, ν =0.3. Stress magnitudes were scaled by a factor ℑ  (Chapter 3, Model 

Inputs). For this experiment, the remote stresses were 1200xxM =  kPa, 1900yyM =  

kPa, and 100xyM = −  kPa. The best representation of observed mean stress magnitudes 

was found by setting ℑ  = 0.8 (or 80% of principal deviatoric stresses computed from 

the observed velocity) for the model domain boundary stresses. The best approximation 

of observed mean stresses was obtained using ν =0.27 and E=7500 MPa (RMSE = 78, 

Figure 4.6b, Table A.1).  Two other calibration examples are shown for comparison 

(Figure 4.6c-d). 
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Figure 4.6 (a) Observed mean stresses. Contour interval is 50 kPa. (b-d) Mean stresses in the absence of a 
fracture simulated using remote stresses, Mxx = 1200 kPa, Myy = 1900 kPa, and  Mxy = -100 kPa, 0.8ℑ = , 
and elasticity constants as noted (Table A.1). Contour interval is 50 kPa. The fracture trace drawn in each 
panel is for reference only. Stresses near the boundary are not easily available in the model output and are 
not contoured, resulting in white space around the perimeter of the model domain. (b) Best-fit calibration, 
ν =0.27, 7500E =  MPa, and RMSE = 78. (c) ν =0.28, 7000E =  MPa, and RMSE = 315. (d) ν =0.28, 

8000E =  MPa, and RMSE = 334. 
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Fracture Propagation Results 

 Fracture propagation was investigated by incorporating test fracture k1 as a 

boundary condition and using the calibrated boundary stresses and elasticity constants. 

Stress conditions along test fracture k1 were scaled by a factor ℑ  to initiate fracture 

propagation. The fracture did not propagate under the best-fit model stress field using 

KIC = 0.1 MPa m1/2 (Table B.1). The Mode I stress intensity factors at both tips were 

negative and 0IIK =  MPa m1/2. Reducing principal stresses along the fracture by 6.25% 

( 0.75ℑ =  instead of 0.8) caused the fracture to propagate at both tips (Figure 4.7, Table 

B.2). At the right tip, IK  = 0.36 MPa m1/2 and 0IIK =  MPa m1/2, exceeding the fracture 

toughness 0.3 MPa m1/2. At the left tip, 0.47IK =  MPa m1/2 and 0.41IIK =  MPa m1/2. 

Propagation continued until intersection with the edge of the model domain. A 

relatively small change in stress conditions was required to drive the eastward 

propagation that is observed downstream. Because IIK  was non-zero at the western tip, 

the stress field was not aligned with the orientation of the fracture tip and we conclude 

that the observed fracture geometry did not develop in this location but must have 

formed somewhere upstream. 
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Figure 4.7 Experiment 1: Simulated propagation of test fracture k1 and mean stresses within model 
domain. For these panels, KIC = 0.3 MPa m1/2 and ℑ=0.75 for the fracture boundary stresses (Table B.2). 
Contour interval is 50 kPa. Mean stresses near the fracture trace were interpolated. (a) Iteration 6. At the 
eastern tip of test fracture k1, KI = 1.08 MPa m1/2, KII = 0.0 MPa m1/2, and the angle of propagation θ0 = 
0°. At the western tip, KI = 1.66 MPa m1/2, KII = -0.41 MPa m1/2, and θ0 = 25.3°. (b) Iteration 10. The 
eastern tip intersected the model boundary (KI = 2.17 MPa m1/2, KII = 0.0 MPa m1/2, and θ0 = 0°). At the 
western tip, KI = 3.10 MPa m1/2, KII = 0.41 MPa m1/2, and θ0 = -14.7°.  
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4.2 Experiment 2 

 In province C, the transverse tips of observed fractures at the 4/5 suture zone 

propagate east before arresting at the structural boundary formed by the Evans and 

Carlson Inlet flows. Fractures are closely-spaced (distance between each is short 

relative to fracture length) and the upstream-pointing segment becomes less visible in 

the satellite imagery with distance downstream. Experiment 1 showed that the 

upstream-pointing tip is likely passive near this location, but does the geometry still 

matter? The objectives of this experiment are (1) to study interaction among adjacent 

fractures, (2) to determine if a non-propagating, upstream-pointing segment plays a role 

in the observed growth of the transverse tip, and (3) to determine if the structural 

boundary formed by the Evans-Carlson suture zone is important in crack tip arrest. 

 Experiment 2 is the first of two experiments located at the upstream end of province 

C (Figure 4.8a). To study the interaction among closely-spaced, subparallel fractures, 

two suture zone fractures of unequal lengths located ~25 km downstream of test 

fracture k1 were investigated. The geometry of test fracture g6, which is identical to an 

observed fracture, is similar to that of test fracture k1. Test fracture j3, 3.4 km 

downstream of test fracture g6, is important because the fracture on which it is based 

propagated nearly 8 km beyond the easternmost tip of any upstream fracture. Test 

fracture j3 is identical to the observed fracture but is shortened by ~5 km at its eastern 

tip. Two model boundaries are described here. The smaller model area is 832 km2. The 

eastern boundary was extended 2 km to allow propagation through the eastern suture 
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zone and to minimize boundary effects on the stress field in this region. The extended-

boundary area is 884 km2. 

 
Figure 4.8 (a) Location of Experiment 2 in the ice shelf highlighted by dark box. (b) Model boundaries 
show fractures g6 and j3. The two model boundaries are represented by dotted lines, where the dots 
represent element endpoints.  

 

 The principal compressive stresses at the eastern side of the model domain (Figure 

4.9) suggest a priori that conditions may be favorable for growth of the transverse tip. 

The “glaciological” stress field and parameters with which the model is initialized do 

not accommodate small-scale variations that may arise due to the suture zone between 

the Evans and Carlson Inlet flows. Comparison between model and observed fracture 

geometry in the suture zone region can be interpreted in terms of the importance of the 

structural boundary to propagation. Downstream of this location, other fractures with 

geometry similar to that of test fractures g6 and j3 are observed to have propagated and 
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arrested at the suture zone. As larger fractures dominate, fracture spacing increases and 

smaller features such as test fracture g6 become less visible in the satellite imagery.  

 
Figure 4.9 Experiment 2: Principal stress orientations and relative magnitudes (red: extensive, cyan: 
compressive). Test fractures g6 and j3 (labeled at right of map) are shown within smaller model 
boundary. Refer to Figure 4.5 for a description of labels. 
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Model Calibration 

 In addition to satisfying the general calibration criteria, model calibration required 

simulating higher stresses observed upstream and distal to the shear margin. The remote 

stresses were Mxx = 900 kPa, Myy = 1800 kPa, and  Mxy = -300 kPa (different from 

Experiment 1) and ℑ=0.8 for the model boundary. For the smaller boundary, the best 

approximation of observed mean stresses that satisfied the calibration criteria was 

obtained using ν =0.29 and E=8000 MPa (RMSE = 85, Figure 4.10b, Table A.2). Two 

other examples demonstrate how small adjustments in elasticity constants may lead to 

unacceptable initial stress fields (Figure 4.10c-d).  
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Figure 4.10 (a) Observed mean stresses. Contour interval is 50 kPa. (b-d) Mean stresses in the absence of 
a fracture simulated using remote stresses, Mxx = 900 kPa, Myy = 1800 kPa, and  Mxy = -300 kPa, 0.8ℑ = , 
and elasticity constants as noted (Table A.2). Contour interval is 50 kPa. The fracture trace and suture 
zones drawn in each panel are for reference only. Refer to Figure 4.6 for an explanation about the dashed 
box. (b) Best-fit calibration, ν =0.29, 8000E =  MPa, and RMSE = 85. (c) Stress gradient increased 
from top to bottom, not east to west, ν =0.28, 8000E =  MPa, and RMSE = 185. (d) Stresses are 
concentrated along model boundary, ν =0.29, 8500E =  MPa, and RMSE = 128. 

 

 Calibration of the extended-boundary domain was less successful. Moving the 

boundary more than a few kilometers to the outboard side of the (eastern) suture zone 

introduced spatial gradients and stress concentrations that were inconsistent with 

observed mean stresses (Figure 4.11, Table A.3). The extended-boundary domain was 

not used in propagation simulations. 
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Figure 4.11 (a) Observed mean stresses for extended-boundary domain. Contour interval is 50 kPa. (b) 
Mean stresses in the absence of a fracture simulated using remote stresses, Mxx = 900 kPa, Myy = 1800 
kPa, Mxy = -300 kPa, and 0.8ℑ =  (Table A.3). Elasticity constants were  ν =0.27 and 8000E =  (RMSE 
= 170). Contour interval is 50 kPa. The fracture trace drawn in each panel is for reference only. Refer to 
Figure 4.6 for an explanation about the dashed box.  

 

Fracture Propagation Results 

 Fracture propagation was investigated by incorporating test fractures g6 and j3 as 

boundary conditions for the smaller boundary. The upstream-pointing segments of the 

fractures are included as model boundaries but their tips are set to be inactive. This 

allows the complete fracture geometry to modify the near-field stresses while 

maintaining the non-propagating tips at their observed locations. Propagation was 

controlled by modifying the scaling factor ℑ  for the boundary stresses along the 

fracture. When 0.8ℑ =  and KIC = 0.1 MPa m1/2, the active fracture tips did not 

propagate (Table B.3). When principal stresses along the fracture were reduced by 

6.25% ( 0.75ℑ =  instead of 0.8), test fracture j3 propagated once to relieve shear stress 

before crack tip arrest (KIC = 0.3 MPa m1/2, Figure 4.12, Table B.4).  
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Figure 4.12 Experiment 2: Simulated propagation of test fractures j3 and g6 and mean stresses within 
model domain. For these panels, the fracture toughness KIC = 0.3 MPa m1/2 and ℑ=0.75 for the fracture 
boundary stresses (Table B.4). Contour interval is 50 kPa. Mean stresses near the fracture trace were 
interpolated. (a) Iteration 1. (b) Iteration 2.  

 

 Setting 0.7ℑ = , or reducing principal stresses along the fracture by 13%, caused 

unstable propagation of test fracture j3 and no growth of test fracture g6 (KIC = 0.3 

MPa m1/2, Table B.5). The computed stress intensity factors at the eastern tip of test 
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fracture j3 remained unchanged as the fracture propagated 5.5 km toward the Evans-

Carlson suture zone, with the same orientation as the observed fracture geometry 

( 0.70IK =  MPa m1/2 and 0IIK =  MPa m1/2, Figure 4.13a). At 1.5 km from the suture 

zone, a new propagation pattern developed that continued as the fracture crossed the 

suture zone (Figure 4.13b).  

 The role of the upstream-pointing segment of the fracture, or at a minimum, a non-

propagating western tip, may be important in facilitating the observed growth of the 

transverse tip. Stress intensity factors are not computed for inactive fracture tips. 

Nevertheless, mean stresses suggest that stress intensity is higher at the western tip, 

increasing with fracture growth (1800 kPa compared to 1600 kPa in Iteration 5 as test 

fracture j3 nears the eastern suture zone). 
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Figure 4.13 Experiment 2: Simulated propagation of test fractures j3 and g6 and mean stresses within 
model domain. For these panels, the fracture toughness KIC = 0.3 MPa m1/2 and ℑ=0.7 for the fracture 
boundary stresses (Table B.5). Mean stresses near the fracture trace were interpolated. (a) Iteration 5. At 
the eastern tip of test fracture j3, KI = 0.70 MPa m1/2, KII = 0.0 MPa m1/2, and the angle of propagation θ0 
= 0°. At the eastern tip of test fracture g6, both KI  and KII  = 0.0 MPa m1/2. (b) Iteration 9. At the eastern 
tip of test fracture j3, KI = 0.44 MPa m1/2, KII = 0.70 MPa m1/2, and θ0 =-59.2°. The stress intensity factors 
at the eastern tip of test fracture g6 were zero.  
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4.3 Experiment 3 

 Shear margin fracture geometries become less distinct in the remote-sensed imagery 

at the downstream end of province C (~30 km downstream of test fracture j3). The 

upstream-pointing segments of the fractures begin to disappear, presumably as the now-

relict features fill with wind-blown snow. By ~80 km downstream of test fracture j3, 

the upstream-pointing segments are no longer visible in the MOA and the fracture tips 

appear to be located at the 4/5 boundary. At that location (Province D in Figure 4.2), a 

new episode of propagation begins, with a new propagation direction (to the west).  

 The objectives of this experiment are: (1) to assess the importance of the upstream-

pointing segment, (2) to investigate crack tip arrest at the eastern suture zone, and (3) to 

determine the stress conditions required to induce propagation west beyond the 4/5 

suture zone. The first objective is investigated by removing the upstream-pointing 

segment from the test fracture geometry. Experiment 2 showed that localized shear 

stresses in the eastern suture zone may reduce the mode I stress intensity factor at the 

eastern tip (Figure 4.12). The propagation behaviors of three fracture lengths are 

evaluated to determine if the presence of the upstream-pointing segment is required to 

permit eastward propagation. For the second objective, two outcomes are possible. If 

the eastern tip of a test fracture arrests before reaching the Evans-Carlson suture zone, 

then the stress field or adjacent fractures must control tip arrest. By contrast, if 

propagation is observed to cross the suture zone with little, if any, variation in preferred 

orientation, then inhomogeneities in the ice associated with the structural boundary 

must be responsible for the crack tip arrest observed at this location in the shelf.  
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 Experiment 3 is the second of two experiments located at the upstream end of 

province C (Figure 4.14a). Because its geometry is characteristic of the fractures 

throughout province C, the fracture that forms the basis of the test fracture j3 geometry 

is again investigated. Here, the geometry of test fracture z2 is defined as the full 

transverse segment of the observed fracture, oriented approximately normal to ice flow. 

The western tip lies 1 km east of the 4/5 suture zone and the eastern tip is 2.3 km west 

of the Evans-Carlson suture zone (Figure 4.14b). By removing the upstream-pointing 

segment, the western tip of test fracture z2 becomes aligned with principal compressive 

stresses (Figure 4.15). These stresses appear, a priori, to be favorable to growth at either 

fracture tip. The propagation behaviors of two other fracture lengths are also simulated. 

The western tips of both fracture lengths have an endpoint coincident with the western 

tip of test fracture z2 near the 4/5 suture zone. From this tip, test fracture s6 extends 2.6 

km east and test fracture s4 extends 5 km east, also coincident with the test fracture z2 

axis (Figure 4.14c).  

 Two model boundaries were used for the experiments presented here (Figure 4.14b). 

The downstream and eastern model boundaries are identical to those in Experiment 2. 

The upstream and western boundaries of the smaller domain were placed in closer 

proximity to the fractures (model area 336 km2). For the larger domain, the western 

boundary was extended 4 km, to better represent the behavior of test fracture z2 near 

the 4/5 suture zone (model area 468 km2).  
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Figure 4.14 (a) Location of Experiment 3 in the ice shelf. (b) The model boundary is represented by 
dotted lines. (c) Three fracture lengths overlap and share a western endpoint.  
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Figure 4.15 Experiment 3: Principal stress orientations and relative magnitudes (red: extensive, cyan: 
compressive). Test fracture z2 is shown within smaller model boundary. The 3/4 and 4/5 suture zones are 
labeled. 

 

Model Calibration 

Calibration required satisfying the general calibration criteria outlined for 

Experiment 1. The remote stresses were Mxx = 900 kPa, Myy = 1800 kPa, and  Mxy = -

300 kPa. For the smaller boundary, the best calibration satisfying the general calibration 



  103 

criteria was obtained using 0.8ℑ = , ν =0.28 and E=8000 MPa (RMSE = 49, Figure 

4.16b, Table A.4). Two other examples are shown for comparison (Figure 4.16c-d). The 

best calibration for the extended-boundary domain was obtained using 0.9ℑ =  

(different from the smaller boundary), ν =0.27, and E=8000 MPa (RMSE = 47, Figure 

4.17b, Table A.5). 

 
Figure 4.16 (a) Observed mean stresses for the smaller boundary. Contour interval is 50 kPa. (b-d) Mean 
stresses in the absence of a fracture simulated using remote stresses, Mxx = 900 kPa, Myy = 1800 MPa, and  
Mxy = -300 kPa, 0.8ℑ = , and elasticity constants as noted (Table A.4). Contour interval is 50 kPa. The 
fracture trace drawn in each panel is for reference only. Refer to Figure 4.6 for an explanation about the 
dashed box. (b) Best-fit calibration, ν =0.28, 8000E =  MPa, and RMSE = 49. (c) Stresses are 
concentrated at corners and along boundaries, ν =0.3, 9000E =  MPa, and RMSE = 107. (d) Stress 
gradient is incorrect, ν =0.29, 8500E =  MPa, and RMSE = 121. 

 



  104 

 
Figure 4.17 (a) Observed mean stresses for the boundary extended 4 km to the west. Contour interval is 
50 kPa. (b) Mean stresses in the absence of a fracture simulated using remote stresses, Mxx = 900 kPa, Myy 
= 1800 MPa, and  Mxy = -300 kPa, and 0.9ℑ =  (Table A.5). Elasticity constants were ν =0.27 and 

8000E =  MPa (RMSE = 47). Contour interval is 50 kPa. The fracture trace drawn in each panel is for 
reference only. Refer to Figure 4.6 for an explanation about the dashed box. 

 

 

Fracture Propagation Results 

 The propagation behaviors of the different fracture lengths—s6, s4, and z2—were 

investigated by incorporating each separately as a boundary condition. The smaller 

boundary was used for test fracture s6. The extended boundary was used for test 

fractures s4 and z2. Both fracture tips of each test fracture were active. Boundary 

stresses along each fracture were scaled to initiate propagation.  

 At the shortest length, test fracture s6 did not propagate when 0.8ℑ =  and KIC = 0.1 

MPa m1/2 (Table B.6) or when 0.75ℑ =  and KIC = 0.3 MPa m1/2 (Table B.8). The 

western tip propagated when 0.75ℑ =  and KIC = 0.15 MPa m1/2  (KI  = 0.177 MPa m1/2, 

KII = 0.0 MPa m1/2, Figure 4.18, Table B.7). The western tip propagated ~1 km through 

the 4/5 suture zone before initiating a single episode of propagation at the eastern tip to 



  105 

release accumulated shear stress along the fracture. The western tip continued to 

propagate as a mode I fracture.  

 
Figure 4.18 Experiment 3: Simulated propagation of test fracture s6 and mean stresses within smaller 
model domain. The fracture toughness KIC = 0.15 MPa m1/2 and ℑ=0.75 for the fracture boundary (Table 
B.7). (a) Iteration 7. (b) Iteration 12.  
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 Test fracture s4, 2.4 km longer than test fracture s6, was investigated within the 

extended-boundary domain ( 0.9ℑ =  for domain stresses). When 0.8ℑ = , which results 

in principal stresses along the fracture reduced by 11.1%, and KIC = 0.3 MPa m1/2, test 

fracture s4 propagated once at the eastern tip to relieve shear stress (KI = 0.245 MPa 

m1/2, KII = -0.245 MPa m1/2, and θ0 = 53°). The western tip propagated 1.5 km through 

the 4/5 suture zone before arresting (Figure 4.19, Table B.9).  

 
Figure 4.19 Experiment 3: Simulated propagation of fracture s4 and mean stresses within extended-
boundary domain. The fracture toughness KIC = 0.3 MPa m1/2 and ℑ=0.8 (Table B.9). Iteration 5.  

 

 Unstable propagation of the western tip of test fracture s4 and episodic propagation 

of the eastern tip occurred when 0.75ℑ = , which results in principal stresses reduced by 

17% (KIC = 0.3 MPa m1/2, Figure 4.20, Table B.10). As the western tip approached the 

4/5 suture zone (KI = 0.476 MPa m1/2, KII = 0.575 MPa m1/2), the eastern tip propagated 

twice before arresting (iteration 2, KI = 0.310 MPa m1/2, KII = 0.980 MPa m1/2). Figure 

4.20a shows the mean stresses prior to the second period of episodic growth of the 



  107 

eastern tip (iteration 6), which lasted for two iterations. The western tip propagated 

through the 4/5 suture zone and as fracture length increased (> 11 km), near-field 

stresses became concentrated at both fracture tips. Extensive deviatoric principal 

stresses at the western tip and small compressive principal stresses at the eastern tip (not 

shown) create a stress field favorable for growth at the eastern fracture tip (Figure 

4.20b-c).  

 Because observed fractures propagate toward the eastern suture zone prior to 

propagating through the 4/5 suture zone, this test shows that the western tip must be 

inactive for eastward growth to occur. The western tip may be limited by upstream-

pointing fracture geometry or inhomogeneities in the ice. 
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Figure 4.20 Experiment 3: Simulated propagation of test fracture s4 and mean stresses within extended-
boundary domain. The fracture toughness KIC = 0.3 MPa m1/2 and ℑ=0.75 (Table B.10). (a) Iteration 6. 
(b) Iteration 12. (c) Iteration 18. 
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 The last test in this experiment assumes that the starter fracture has propagated east 

the full observed extent. Test fracture z2 is investigated within the extended-boundary 

domain. When 0.85ℑ = , or reducing principal stresses 5.6% along the fracture 

boundary, the western tip propagated once to relieve shear stress (KIC = 0.3 MPa m1/2, 

Figure 4.21, Table B.11). When 0.8ℑ = , which results in principal stresses reduced by 

11.1% along the fracture boundary, near-field shear stresses at the eastern tip remain 

important. The western tip propagated nearly 2 km through the 4/5 suture zone before 

initiating a single episode of propagation at the eastern tip to relieve accumulated shear 

stress along the fracture (KIC = 0.3 MPa m1/2, Figure 4.22, Table B.12). Following this 

release of shear stress, the western tip continued to propagate until it reached the edge 

of the model domain. 
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Figure 4.21 Experiment 3: Simulated propagation of test fracture z2 and mean stresses within extended-
boundary domain. The fracture toughness was KIC = 0.3 MPa m1/2 and ℑ=0.85 (Table B.11). (a) 
Iteration 1. (b) Iteration 2. 
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Figure 4.22 Experiment 3: Simulated propagation of test fracture z2 and mean stresses within extended-
boundary domain. The fracture toughness was KIC = 0.3 MPa m1/2 and ℑ=0.8 (Table B.12). (a) Iteration 
10. (b) Iteration 16. 
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4.4 Experiment 4 

 

 In province D, the 4/5 suture zone is breached by a few large fractures that 

propagate to the west. Near the shelf front, fractures may exceed 100 km in length. 

Here, we are interested in simulating the evolution of an observed fracture that is ~25 

km in length and located ~185 km from the shelf front. Fracture M0 is the first fracture 

observed to breach the 4/5 suture zone (Figure 4.23b). The objective of this experiment 

is to determine the stress conditions required to induce propagation through the 4/5 

suture zone. 

 Experiment 4 is located at the upstream end of province D (Figure 4.2). The model 

boundary contains test fracture N1, which is defined using the endpoints and orientation 

of the observed fracture N0 (~11 km upstream of observed fracture M0) and moving 

the fracture 10 km upstream (Figure 4.23a). Calibration of a second model boundary 

located 10 km downstream was unsuccessful (Tables A.7 and A.8). The model area is 

1125 km2.  
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Figure 4.23 (a) Location of Experiment 4 in the ice shelf. (b) Model boundary showing test fracture N1 in 
dark line, which is based on the observed fracture N0 in dashed line. Observed fracture M0 is labeled. 
The model boundary is represented by dotted lines, where the dots represent element endpoints.  

 

 The principal stresses in the surrounding ice shelf differ from the previous 

experiments (Figure 4.24). To the west of the model boundaries, lateral extensive 

principal stresses are relatively small. To the east, left-lateral shear is observed. The axis 

of test fracture N1 is approximately aligned with compressive principal stresses. 
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Figure 4.24 Experiment 4: Principal stress orientations and relative magnitudes (red: extensive, cyan: 
compressive). Test fracture N1 is highlighted by straight line segment within model boundary (fracture 
labels at right of map). The 3/4 and 4/5 suture zones are labeled. 

 

Experiment Calibration 

 Larger model boundaries become challenging to calibrate at this location, but are 

required to simulate propagation of larger fractures. Calibration of the model boundary 

required satisfying the general calibration criteria. Banding due to the non-random error 

in the velocity data is present in mean stresses for the boundary, becoming most 

noticeable along the shear margin. The remote stresses were Mxx = 900 kPa, Myy = 1800 
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kPa, and Mxy = -300 kPa. For the boundary, 0.85ℑ = . The best approximation of mean 

stresses that satisfied the calibration criteria was obtained using ν =0.27 and E=7500 

MPa (RMSE = 111, Figure 4.25b, Table A.6).  

 

 
Figure 4.25 (a) Observed mean stresses. Contour interval is 50 kPa. (b) Mean stresses in the absence of a 
fracture simulated using remote stresses, Mxx = 900 kPa, Myy = 1800 kPa, and  Mxy = -300 kPa, and 

0.85ℑ =  (Table A.6). Elasticity constants were ν =0.27 and 7500E =  MPa (RMSE = 111). Contour 
interval is 50 kPa. The fracture trace drawn in each panel is for reference only. Refer to Figure 4.6 for an 
explanation about the dashed box. 
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Fracture Propagation Results 

 Fracture propagation was investigated by incorporating test fracture N1 as a 

boundary condition. Both fracture tips were active and the fracture toughness ICK  was 

0.3 MPa m1/2. Boundary stresses along the fracture were scaled to initiate propagation. 

When 0.8ℑ = , which results in principal stresses along the fracture reduced by 5.9%, 

the western tip of test fracture N1 propagated once to relieve shear stress (Figure 4.26, 

Table B.13). Reducing principal stresses along the fracture by 11.8% ( 0.75ℑ = ) caused 

unstable propagation of the western tip until it reached the model boundary and the 

episodic growth of the eastern tip as fracture length increased (Figure 4.27, Table B.14). 

In the first iteration, the western tip propagated (KI  = 0.617 MPa m1/2, KII = 0.878 MPa 

m1/2) and the eastern tip grew one increment to relieve shear stress before arresting (KI  

= 0.350 MPa m1/2, KII = 1.001 MPa m1/2). Following this growth, the western tip 

propagated over 10 km. With each incremental increase in fracture length, the mode I 

stress intensity factor at the eastern tip increased until it was sufficient to exceed the 

mixed-mode propagation criteria (iteration 16, KI  = 0.026 MPa m1/2, KII = -0.786 MPa 

m1/2). Then, the eastern tip of test fracture N1 reinitiated propagation. Near-field 

stresses at the western tip remained more favorable to fracture growth than at the 

eastern tip. At iteration 25, the stress intensity factors were greater at the western tip (KI  

= 3.489 MPa m1/2, KII = 1.268 MPa m1/2) than at the eastern tip (KI  = 0.651 MPa m1/2, 

KII = 0.803 MPa m1/2). 
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Figure 4.26 Experiment 4: Simulated propagation of test fracture N1 and mean stresses within model 
domain. The fracture toughness was KIC = 0.3 MPa m1/2 and ℑ=0.8 (Table B.13). (a) Iteration 1. (b) 
Iteration 2.  
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Figure 4.27 Experiment 4: Simulated propagation of test fracture N1 and mean stresses within model 
domain. The fracture toughness was KIC = 0.3 MPa m1/2 and ℑ=0.75 (Table B.14). (a) Iteration 6. (b) 
Iteration 12. (c) Iteration 18.  
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4.5 Experiment 5 

 

 Near the downstream end of province D, fractures are observed to propagate 

through several structural boundaries but still do not breach the Evans-Carlson suture 

zone. Near the shelf front, fractures may exceed 100 km in length. The objectives of this 

experiment are: (1) to determine the stress conditions required to induce propagation 

west through the ice shelf, (2) to simulate mechanical interaction between fracture tips, 

and (3) to assess the challenges in applying the model to a large domain near the ice-

shelf front. 

 The downstream end of experiment 5 is located ~80 km from the shelf front in 

province D. In this location, two closely-spaced, subparallel fractures (~15 km 

separation) exceed 70 km in length. These features may extend through the full ~400 m 

thickness of the ice shelf. The upstream fracture is selected for investigation. Observed 

fracture J0 is located ~90 km downstream of observed fracture M0, which was 

investigated in experiment 4, and ~95 km from the shelf front (Figure 4.28). Test 

fracture J5 is defined as the easternmost 22 km of the observed fracture J0. To 

minimize boundary effects and increase the likelihood of successful calibration, the 

western side of the model boundary was selected to lie east of the western shear margin 

of the Ronne Ice Shelf. The model area is 6,000 km2, over 5 times larger than the model 

area of Experiment 4. A second test was conducted to study mechanical interaction 

between test fracture J7, which is defined as the easternmost 35 km of the observed 

fracture J0, and test fracture A4, which is defined by placing the western 13 km of a 
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shelf-front corner fracture (left side of image in Figure 4.29) within the model domain 

at distance relative to test fracture J7 that is similar to observations at the shelf front. 

 
Figure 4.28 (a) Location of Experiment 5 in the ice shelf. (b) Model boundary showing test fracture J5 in 
dark line, which is based on the observed fracture J0 in dashed line. The model boundaries are 
represented by dotted lines, where the dots represent element endpoints.  

 

 At this location in the ice shelf, deviatoric principal stresses become relatively 

uniform, except near the margins and the shelf front (Figure 4.29), and effective strain 

is relatively small (Figure 4.30). The tips of observed fractures H0 and J0 are aligned 

with least extensive principal stress directions (deviatoric). As the fractures near the 

shelf front, deviatoric stress magnitudes decrease and more variability is observed. It is 

helpful here to view principal stresses due to full glaciological stress (Figure 4.31). The 

tips of observed fractures H0 and J0 remain aligned with least extensive principal 

glaciological stress directions. Lateral spreading is observed near the central front of the 

Ronne Ice Shelf, east of the Evans-Carlson suture zone in Figure 4.31. 
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Figure 4.29 Experiment 5: Principal stress orientations and relative magnitudes for deviatoric stresses 
(red: extensive, cyan: compressive). Observed fracture J0 is highlighted (fracture labels at right of map).  
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Figure 4.30 Experiment 5, effective strain rate, a-1. The effective strain rate in this region of the ice shelf 
is relatively small. 
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Figure 4.31 Experiment 5: Principal stress orientations and relative magnitudes for full glaciological 
stresses, deviatoric plus overburden pressure (red: extensive, cyan: compressive). (Fracture labels at right 
of map). 
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Experiment Calibration 

 Larger model domains can be challenging to calibrate because they span significant 

variations in shear stress. Here, the western boundary of the model domain is near the 

western margin of the Ronne Ice Shelf and the eastern boundary is near the Evans-

Carlson suture zone. Calibration of the model boundary required: (1) minimizing 

boundary effects (high stress intensity concentrated along the boundary), and (2) 

generating a stress field with minimal variations in the eastern two-thirds of the model 

domain. The best approximation of mean stresses that minimized the boundary effects 

was obtained using remote stresses Mxx = 900 kPa, Myy = 1600 kPa, and Mxy = -100 kPa 

(different from previous experiments) and scaling factor 0.8ℑ = . The elasticity 

parameters were ν =0.27 and E=7500 MPa (RMSE = 122, Figure 4.32, Table A.9). The 

average magnitude of the non-varying stress field was ~100 kPa lower than observed 

mean stresses, which was acceptable given the difficulty of calibrating the large 

boundary.  
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Figure 4.32 (a) Observed mean stresses. Contour interval is 50 kPa. (b) Mean stresses in the absence of a 
fracture simulated using remote stresses, Mxx = 900 kPa, Myy = 1600 kPa, and  Mxy = -100 kPa, and 

0.8ℑ =  (Table A.9). Elasticity constants were ν =0.27 and 7500E =  MPa (RMSE = 122). Contour 
interval is 50 kPa. The fracture trace drawn in each panel is for reference only. Refer to Figure 4.6 for an 
explanation about the dashed box. 
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Fracture Propagation Results 

 Fracture propagation was investigated by incorporating test fracture J5 as a 

boundary condition. Both fracture tips were active and the fracture toughness ICK  was 

0.3 MPa m1/2. Boundary stresses along the fracture were scaled to initiate propagation. 

Using the best-fit model stress field ( fracture boundary 0.8ℑ = ℑ = ), both tips of test fracture 

J5 propagated (Figure 4.33, Table B.15). In the first iteration, the stress intensity factors 

at the western tip (KI  = 1.413 MPa m1/2, KII = -0.442 MPa m1/2) were greater than at the 

eastern tip (KI  = 0.704 MPa m1/2, KII = -0.176 MPa m1/2). The mode I stress intensity 

factor at the eastern tip remained unchanged as the tip propagated through the eastern 

suture zone (recall that the suture zone is not represented in the model). The eastern tip 

propagated, adjusting orientation to form a gradual kink, until it reached the model 

boundary (iteration 17). As the western tip propagated and fracture length increased, the 

mode II stress-intensity factor at the western tip decreased, reaching zero as the total 

fracture length neared 70 km. Test fracture J5 was also simulated with an inactive 

eastern tip, as observed in the ice shelf (Figure 4.34). 
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Figure 4.33 Experiment 5: Simulated propagation of test fracture J5 and mean stresses. The fracture 
toughness was KIC = 0.3 MPa m1/2 and ℑ=0.8 (Table B.15). (a) Iteration 1. (b) Iteration 12. (c) 
Iteration 24. (d) Iteration 36. 



  128 

 
Figure 4.34 Experiment 5: Principal stress orientations and relative magnitudes for deviatoric stresses 
(red: extensive, cyan: compressive) based on simulation of test fracture J5 and inactive eastern tip. 
(Fracture labels at right of map).  
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 Using the same experiment setup ( fracture boundary 0.8ℑ = ℑ =  and ICK  = 0.3 MPa m1/2), 

mechanical interaction between fracture tips was investigated by incorporating test 

fractures J5 and A4 as boundary conditions (Figure 4.35, Table B.16). In the first 

iteration, the eastern tip of test fracture A4 propagated once to relieve shear stress, then 

arrested. Both tips of test fracture J7 propagated. As the western tip of test fracture J7 

approached the eastern tip of test fracture A4, tensile stresses were induced in the 

vicinity of each other’s tips (Figure 4.36). In response to the favorable stress conditions, 

the eastern tip of test fracture A4 re-initiated growth. As the fracture tips overlapped, 

stress intensities increased and tensile stresses caused the tips to diverge (Figure 4.37). 

The highest stress intensity factors of the simulation were observed at the western tip of 

test fracture J7 during this phase of interaction, consistent with large principal tensile 

stresses (Figure 4.38). As the test fractures continued propagating, stress intensities at 

the tips of test fracture J7 increased until the tip intersected test fracture A4. Test 

fracture A4 arrested. 
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Figure 4.35 Experiment 5: Mean stresses and propagation based on simulation of mechanical interaction 
between test fractures A4 and J7, iteration 25. The eastern tip of test fracture A4 initiated growth as the 
larger test fracture J7 approached it. 
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Figure 4.36 Experiment 5: Principal stress orientations and relative magnitudes for deviatoric stresses 
(red: extensive, cyan: compressive) based on simulation of mechanical interaction between test fractures 
A4 and J7, iteration 25. (Fracture labels at the bottom of the map). 
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Figure 4.37 Experiment 5: Mean stresses and propagation based on simulation of mechanical interaction 
between test fractures A4 and J7, iteration 28.  
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Figure 4.38 Experiment 5: Principal stress orientations and relative magnitudes for deviatoric stresses 
(red: extensive, cyan: compressive) based on simulation of mechanical interaction between test fractures 
A4 and J7, iteration 28. 
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5 Discussion 

 The fracture mechanics models developed here allow the hypothesis that structural 

boundaries within the Ronne Ice Shelf play an important role in fracture propagation to 

be tested.  They also demonstrate other important aspects of fracture propagation in the 

ice shelf environment. The discussion has three parts: (1) experimental evidence for the 

role of structural boundaries in crack tip arrest, (2) other insights gained from the model 

experiments, and (3) limitations in model implementation. 

 



5.1 Role of Suture Zones 

 Suture zones that form where shear margins from adjacent ice streams merge 

become structural boundaries within the ice shelf into which the streams flow. These 

boundaries appear to influence the horizontal propagation of fractures in the ice shelf 

(tips are observed to arrest at these boundaries). Mapped fractures and structural 

boundaries show that propagating fractures arrest near prominent suture zones in the 

Ronne Ice Shelf (Figure 5.1). That mapped fractures arrest at the suture zone formed by 

the Evans and Carlson Inlet flows—and do not propagate through this boundary until 

within 50 km of the shelf front—suggests that material properties within this suture 

zone must be important in crack tip arrest. To the west, the 4/5 zone contains highly 

fractured ice from the eastern shear margin of the Evans Ice Stream (tributary 5a). Few 

fractures in province D are observed to propagate west through the 4/5 suture zone, and 

in no case does westward propagation occur before the eastern fracture tips reach the 

suture zone formed by the Evans and Carlson Inlet flows. 
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Figure 5.1 Outflow from Evans Ice Stream and neighboring ice streams (left to right: Carlson Inlet, 
Rutford Ice Stream, and Institute Ice Stream). (a) Structural boundaries. (b) Fractures. (c) Structural 
boundaries and fractures. Letters correspond to provinces of similar fracture geometry. Brackets identify 
upstream and downstream fracture groups. 

 

 Suture zones are clearly associated with the arrest of propagating fracture tips. Yet 

in each experiment, unless localized shear stress arrested growth, fractures did not arrest 
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in suture zone locations (Table 5.1). Because the models use far-field glaciological 

stresses and associated material properties (variations due to the presence of a suture 

zone are not treated) we can infer that suture zones play an important role in fracture 

mechanics within the ice shelf. Experiments further show that fracture lengths in 

province D (>60 km for test fracture J5) generate tip stress intensities that would be 

sufficient to continue propagation (Table 26), but tip arrest is observed near the 1/2 

suture zone (Figure 4.30). In the absence of suture zones, fractures propagate. We thus 

conclude that these structural boundaries in the ice must be responsible for the observed 

crack tip arrest.  

Table 5.1 Experiments that demonstrate the importance of suture zones in fracture tip arrest. In these 
experiments, test fractures do not arrest at the Evans-Carlson suture zone. 

Experiment Number Test Fracture Province Figure Reference 
1 k1 B 4.7b 
2 j3 C 4.13b 
3 s4 C 4.21c 
4 N1 D 4.29c 
5 J5 D 4.33c 

 

 There are two possible roles for suture zones in crack tip arrest. First, enhanced 

shear within these suture zones may reduce the mode I stress intensity at fracture tips. 

Second, past shear experienced by this ice may modify its mechanical properties 

(fracture toughness, elasticity constants). Near the surface, cold air ponds in crevasses, 

cooling the ice and making it more brittle while at depth, the ice may be relatively warm 

and less brittle due to its shear history (Harrison et al., 1998). The ice fabric may have a 

preferred crystal orientation due to its strain history. Once a crack tip has arrested at a 
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suture zone, microfracturing in the process zone (to dissipate energy when propagation 

is not possible) may further modify ice rheology.  

 When tip arrest occurs, three outcomes are possible. First, the tip arrests and the 

fracture becomes a passive feature in the shelf, possibly filling in with wind-blown 

snow. Second, propagation may initiate at the other tip of the fracture. Third, if neither 

tip is able to propagate but the propagation criterion is satisfied, the fracture may 

increase the displacement between fracture walls (greater width), which may indirectly 

lead to vertical propagation.  

 Examples of vertical propagation to relieve stress where lateral propagation is not 

possible are observed in the outflow of the fast-flowing Rutford Ice Stream. Here, 

fractures form downstream of two grounded features—Korff Ice Rise and Kershaw Ice 

Rumples (Figure 5.2). Fractures formed at the downstream end of Korff Ice Rise advect 

away from the ice rise, forming a crevasse train that becomes a structural boundary in 

the shelf.  Large fractures on the western side of the boundary are not observed to 

propagate through it. Instead, longitudinal stretching appears to “open” the fractures, 

some of which penetrate the full thickness of the ice shelf.  A similar scenario is 

observed downstream of Kershaw Ice Rumples. 
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Figure 5.2 Crevasses at the downstream ends of Kershaw Ice Rumples and Korff Ice Rise, in the outflow 
of the Rutford Ice Stream. Shadows cast by the northern walls fall on a rift-filling mélange of sea ice and 
snow.  
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5.2 Other Insights 

 The fracture propagation experiments yield other interesting details about fracture 

propagation in the ice shelf. These details include the following: shear at the fracture 

tips, modification of near-field stresses by adjacent fractures, the role of fracture length 

in episodic propagation, controls on propagation near the shelf-front, and what it means 

when stresses along the fracture are scaled from best-fit model stresses 

( fracture boundaryℑ < ℑ ).  

 

Fracture Mechanics 

 The fracture tip propagates in an orientation determined by stress-intensity factors at 

the tip. For a pure mode I fracture, in-plane growth occurs (θ  = 0°). A pure mode II 

fracture will propagate at ±70.5° to the existing fracture plane. The growth orientation 

of a mixed-mode fracture lies between these two angles. A special mixed-mode case 

occurs when I IIK K= , in which case the growth orientation is ±53.13° to the existing 

fracture plane. In response to shear stress, the fracture endpoints may propagate at 

abrupt angles that depend on the sense of shear (left- or right-lateral; Figure 5.3a, b). 

Left-lateral shear, which is consistent with the eastern suture zone, is observed in the 

propagation behavior of test fracture z2 (Experiment 3; Figure 5.3c or Figure 4.24). 

Right-lateral shear, which becomes relatively more important near the shelf front, is 

observed in the propagation of test fracture N1 in (Experiment 4; Figure 5.3d or Figure 

4.29). When fractures are small (<20 km), experimental results suggest that shear 
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induced by fracture growth may lead to arrest of a propagating tip, as in test fracture s6 

(Experiment 3; Figure 4.19c). Smaller scale spatial variation in shear may cause a small 

adjustment to tip geometry as the fracture seeks optimal orientation with respect to 

principal stresses, as in Experiment 3’s test fracture s4 (Figure 4.20) and test fracture z2 

(Figures 4.23 and 4.24).  

 
Figure 5.3 Propagation orientation of fractures subject to shear stress. (a) Left-lateral shear. (b) Right-
lateral shear. (c) Left-lateral propagation of test fracture z2, rotated and scaled. (d) Right-lateral 
propagation of test fracture N1, rotated and scaled.  

 

 The change in propagation direction may be abrupt, as in test fracture z2 (Figure 

5.3c or Figure 4.24) or gradual, as in test fracture J5 (Figure 4.29 or 4.33). Observed 

fracture J0 has a gradual curve at its western tip that is consistent with right-lateral 

shear. This is the result of shear near the western margin of the ice shelf. The simulated 

fracture has only a gradual reorientation. The western margin was not part of the model 

domain.  

 To understand mechanical interaction among fractures, we must consider 

conservation of energy. Adjacent fractures of equal lengths must share the available 

propagation energy Gi. This energy is identical for both fractures but less than that for 
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an isolated fracture in the same far-field stress field (Pollard and Aydin, 1988). Indirect 

evidence of mechanical interaction among fractures is provided by test fracture k1 

(Experiment 1; Figure 4.7). Simulated stresses at the upstream-pointing tip of the 

isolated test fracture are large enough for continued growth but the observed fracture 

does not propagate in the ice shelf. We infer that the inhibited growth is due to the 

effect of many closely-spaced, adjacent fractures in this area (refer to province C in 

Figure 3.10).  

 As the length ratio between the two fractures increases, the propagation energy of 

the longer fracture approaches that of an isolated fracture, while the energy of the 

shorter fracture approaches zero (Pollard and Aydin, 1988). Experiment 2 provides 

direct evidence of this stress shadow effect. The eastern tip of test fracture g6 is in the 

“shadow” cast by the longer test fracture j3, enabling the latter to act as an isolated 

fracture (Figure 4.13b, Table 15). This effect depends on the relative fracture lengths 

and orthogonal spacing, among other factors.  

 As the length of the lead fracture increases, the propagation of more distal fractures 

is inhibited and spacing increases between fractures allowed to propagate (Pollard and 

Aydin, 1988). Indeed, fracture spacing increases in province D, where orthogonal 

spacing approaches ~1.5a for a = 35 km (observed fractures H0 and J0, Figure 4.28b). 

For this spacing, observed fractures H0 and J0 are treated as a “set” of fractures, as are 

the set of three fractures at the shelf front (Figure 4.31).  Given the stress shadow effect, 

it is curious that observed fractures H0 and J0 are so closely spaced.  They may have 

been of similar lengths and propagated together as they advected through the shelf. 
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Propagation would be inhibited for distal fractures in the shadow cast by the H0 and J0 

set. A similar stress shadow may be cast by the fractures at the shelf front. As the 

fractures continue to advect through the shelf, two events may occur: (1) the 

downstream fracture of a set may become longer (more favorable stress conditions), 

casting its own shadow on the upstream fracture (as in observed fracture H0 on J0), or 

(2) with proximity to the shelf-front, stress conditions may be large enough to allow 

even “small” fractures, those arrested at the 4/5 suture zone, to propagate.  

 Mechanical interaction between fracture tips may enhance or inhibit fracture 

propagation. Experiment 5 provides direct evidence of enhanced propagation behavior 

(Figures 4.35-4.38). Another test conducted using variations of these fractures by 

setting them at similar lengths resulted in inhibited growth within the same model 

domain (not shown). 

 Fracture length plays an important role in continued propagation and re-initiation of 

growth at an arrested tip. Episodic propagation, growth characterized by tip arrest 

followed by re-initiation, may occur when fracture length increases, near-field stresses 

change, or ice material properties change. Two experiments demonstrate the role of 

fracture length in episodic propagation, Experiment 3 (test fracture s4, Figure 4.21) and 

Experiment 4 (test fracture N1, Figure 4.29). The latter experiment is a likely scenario 

of growth re-initiation in the ice shelf. Here, the eastern tip propagated once to relieve 

shear stress and then arrested. Although the eastern tip had arrested, the fracture 

lengthened due to propagation of the western tip. Increases in fracture length steadily 
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increased the mode I stress intensity (propagation energy) at the eastern tip until it was 

large enough for propagation to re-initiate and maintain growth. 

 Near the shelf front, glaciological stresses are large enough to propagate fractures 

without requiring stresses along the fracture to be scaled from best-fit model stresses. In 

simulations of lateral propagation, this may be due to several factors: relative 

homogeneity of ice thickness along the fracture (Figure 5.4) and propagation energy 

associated with large fractures (~21 km for test fracture J5, Figure 5.4). In addition, 

near-shelf front rifts extend through the full ice thickness. These rifts may contain 

seawater, which enhances propagation (Larour et al., 2004; Scambos et al., 2000). 

 
Figure 5.4 Ice shelf thickness. Contour interval is 20 m. Observed fracture J0 in gray dashed line; test 
fracture J5 in black solid line. The fracture trace and suture zone drawn in the panel are for reference 
only.  

 

 When principal deviatoric stresses are modified by a factor ℑ , what does 

fracture boundaryℑ < ℑ  mean? First, for a mode I fracture, mean normal stresses decrease 

along the fracture axis, concentrating at the fracture tips (Pollard and Segall, 1987, p. 
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312). Thus, some decrease in stress magnitude from the best-fit model stresses may be 

expected and we do observe that principal stresses decrease along the length of a 

simulated propagation. Second, we do not consider any stress shadow effects that may 

be due to adjacent fractures outside the model, effects that would also modify stresses 

along the fracture. 

 

5.3 Model Implementation 

 Model implementation is limited by error in the observational data used to initialize 

each model, assumptions required by the numerical method, and imperfections in the 

calibration of model parameters. The non-random error in the velocity data required a 

smoothing filter, implemented using a 20 km x 20 km square window size. Noise was 

greatly reduced but some banding persists. A single inverse rate factor was used in all 

experiments, though it may vary across the study area (Larour et al., 2005). Similarly, 

elasticity constants were assumed constant for any given experiment.  

 The most important requirements for model implementation are that model 

assumptions must be satisfied and calibration successful. We assume that LEFM 

adequately describes the propagation of fractures in the ice shelf (that is, that the 

viscous component of ice deformation may be ignored). This is reasonable because near 

the surface (most fractures in this study are not through-cutting) and on medium-length 

time scales (days to months), glacier ice behaves elastically and undergoes brittle 

fracture at sufficiently large stresses (compressive stresses close fractures at depth, 

ignoring basal fractures). To study lateral propagation of fractures, the plane strain 
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assumption is reasonable because the horizontal shelf geometry, or even the width of an 

ice stream outflow, is much greater than the ice thickness. The steady-state assumption, 

which permits the study of the evolution of a set of fractures, is reasonable due to 

agreement between flow features and velocity azimuths. 

 Successful calibration of each model requires careful boundary selection. The 

presence of shear stresses makes boundary selection challenging in some locations. For 

example, the boundary for Experiment 5 had to be selected to lie east of a shear zone, 

limiting the model area but making simulation possible. Model area was also limited in 

province C due to locally large shear stresses ( 0.5xy xxσ σ≥ ). In the present work, for 

model areas < 1000 km2, an acceptable RMSE score typically followed the guideline: 

 0.14 ARMSE q≤  [5.1] 

in which the model area A has units of km2 and the constant q is 1 km-2. For larger 

model areas, an RMSE value below 130 is acceptable. These guidelines may be useful 

in implementing the model at another location in the Ronne-Filchner Ice Shelf, or in 

another ice shelf. 



6 Conclusions 

 

 Ice shelves around Antarctica are characterized by abundant fractures (see, for 

example, the MOA http://nsidc.org/data/moa). A subset of these fractures become the 

planes along which large, tabular icebergs calve.  Calving is the primary means of ice 

mass loss in the Antarctic and on large ice shelves and tabular iceberg calving is the 

dominant form of calving.  Of interest then is to understand how an initial population of 

fractures evolves to become the large near-front rifts along which tabular icebergs 

calve, in particular what limits their propagation. The Ronne Ice Shelf is an ideal 

location for this study due to its simple flow history. We conclude from the experiments 

presented here that the far-field “glaciological” stress is sufficient to drive horizontal 

propagation in most locations but that propagation is limited by structural boundaries in 

the ice shelf and modification of the stress field by adjacent fractures.  

 The large fractures we track from near the grounding line to the shelf front are the 

fractures that become the planes along which tabular icebergs calve (for example, 

icebergs A43 and A44 in the year 2000).  For most of their evolution, fracture 

propagation is limited by inhomogeneities in the shelf. Only near the front do fractures 

grow to lengths required to produce large icebergs.  The same spatiotemporal pattern is 

observed for large rifts near the central shelf front. 

 An important goal in studying the propagation of ice shelf fractures is the 

development of a “calving criterion” that can be used in simulation of ice shelf and ice 

sheet evolution over long time scales. Existing calving criteria, developed for tidewater 
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calving glaciers, rely on empirical correlations between quantities such as water depth 

and front location (Meier, 1994; van der Veen, 1996) with an incomplete representation 

of the physical processes involved in iceberg production. Similar developments for the 

large, embayment filling ice shelves associated with marine ice sheets remain elusive. 

At present, the development of such criteria follows parameterizations developed for 

tidewater glaciers in that empirical relationships between longitudinal strain rates and 

calving rates are used (Alley et al., 2007; Bassis, 2007). This approach implicity 

emphasizes vertical propagation (Fastook and Schmidt, 1982; Hughes, 1983; Reeh, 

1968). The work presented here suggests a different view is warranted, at least in the 

case of relatively wide, embayed ice shelves such as the Ronne and Ross.  

 To support our framework, we must establish that horizontal, not vertical 

propagation governs the production of tabular icebergs. Consider the mode I fracture 

diagram from Chapter 2 (Figure 2.1) in two orientations (Figure 6.1). For a tidewater 

glacier, fracture length ~ ice thickness and longitudinal stretching favors “opening” of 

the fracture and vertical propagation. For a transverse ice shelf fracture, fracture length 

>> ice thickness and longitudinal stretching favors lateral propagation (mixed-mode 

behavior is also present).   

 
Figure 6.1 Idealization of mode I fracture propagation for (a) fracture length ~ ice thickness (cross-
section, e.g. tidewater glacier) and (b) fracture length >> ice thickness (e.g. ice shelf). 



  149 

 The likelihood of vertical propagation can also be evaluated by calculating stress 

intensity at the vertical tip of a typical fracture in the near-front environment.  

Following van der Veen (1998) and Scambos et al. (2000), the stress intensity for mode 

1 opening in a dry fracture is the sum of the effect of tensile stress and the effect of the 

lithostatic stress, which tends to close the fracture.  The first component is defined: 

 ( )(1)
m yyK f dλ τ π=  [6.1] 

in which ( )f λ  is the ratio of crevasse depth d to ice thickness H and yyτ  is the 

deviatoric stress normal to the fracture plane.  The lithostatic component is: 
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in which iρ  represents the ice density, sρ  is the density of the surface snow, C is a 

constant taken to be 0.02 m-1, and G is a numerically-derived function of λ  and 

b dγ = . Using the same parameter values as Scambos et al. (2000), along with 

geometry, ice thickness, and stresses for  fracture J0 (Figure 4.31), and a fracture depth 

of 50 meters (following Fricker et al., 2005), the resulting stress intensity factors in the 

region of fracture J0 are negative (~ -16 MPa m1/2), indicating that vertical propagation 

is not favorable in this region. 

 Other evidence for the importance of horizontal propagation comes from the 

mechanical interaction of fractures near the shelf front. As the tips of large fractures 

approach each other, which is observed near the shelf front (Figure 1.3), they induce 
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tensile stresses in the vicinity of each other’s tips, enhancing propagation (Pollard and 

Aydin, 1988).  

 The large fractures we observe near the front of the Ronne Ice Shelf will at some 

future time play a part in iceberg calving, as such features have been observed to do in 

the past (Lazzara et al., 1999). Detailed documentation of fracture propagation 

preceding a major calving event is limited by satellite image resolution, availability, and 

cloud cover.  One reasonably well observed event is the calving of  iceberg B-15 from 

the eastern front of the Ross Ice Shelf in March 2000 (Figure 6.2).  In that event, large 

fractures like the near-front fractures examined here, connected with fractures generated 

by shear at the corner of the ice shelf front to form the 300 km long and 40 km wide 

iceberg.  Both the pre-existing fractures and new fractures forming at the front corner of 

the ice shelf were necessary (but neither alone was sufficient) to generate the massive 

calving event. 

 It is not possible, in the framework of whole-ice sheet models, to resolve the fine 

scale features that we find to govern fracture length but it may be possible to develop a 

criterion that can be used to identify a position toward which the shelf front will tend.  

In that such a criterion would emphasize the tendency of the front to advance or retreat 

toward the minimum condition for a steady geometry, it would be similar to 

relationships developed for tidewater glacier calving (van der Veen, 1996; Vieli et al., 

2001). The basis for the criterion would be, however, distinct from those generally used 

for tidewater glaciers in that it would employ principles from fracture mechanics, not an 

empirical correlation. Such a formation should, according to the present work, follow 
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the far-field principal stresses in the framework of mode I and mode II propagation in 

the horizontal plane. The criterion may reasonably assume that large fractures will, 

periodically, be present near the front (depending on a spacing defined in part by their 

length, and thus by structural properties of the ice shelf). Those fractures are necessary 

but not sufficient to initiate large calving events. The second requirement is large 

fractures propagating from the corners of the front, driven by the relatively large shear 

stresses at the corners (Figure 4.29). It is the second requirement that should be used to 

develop a front-position criterion for ice shelves in wide embayments. 
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Figure 6.2 AVHRR scenes from the National Snow and Ice Data Center track development of fractures in 
the eastern Ross Ice Shelf that resulted in the calving of a large iceberg in March 2000.  Note that the 
1992 image is a composite of images with several sun illumination angles, such that more features are 
apparent than in a single scene.  

 



LITERATURE CITED 

Airy, G. B., 1863, On the Strains in the Interior of Beams: Philosophical Transactions 
of the Royal Society of London, v. 153, p. 49-79. 

Alley, R. B., Joughin, I., Horgan, H., Dupont, T. K., Parizek, B. R., Anandakrishnan, S., 
and Cuffey, K. M., 2007, A calving law for ice shelves: spreading-rate control of 
calving rate, 2007 WAIS/FRISP Workshop. 

Aydin, A., and Johnson, A. M., 1978, Development of faults as zones of deformation 
bands and as slip surfaces in sandstone: Journal of Pure and Applied Geophysics, v. 
116, no. 4-5, p. 931-942. 

Bassis, J. N., 2007, When iceberg calving matters: An investigation into the feedback 
between iceberg calving and dynamic changes in the flow of inland ice, 2007 
WAIS/FRISP Workshop. 

Bassis, J. N., Coleman, R., Fricker, H. A., and Minster, J. B., 2005, Episodic 
propagation of a rift on the Amery Ice Shelf, East Antarctica: Geophysical Research 
Letters, v. 32, no. 6, p. L06502. 

Canadian Centre for Remote Sensing, 2000, The Calving of Icebergs A-43 and A-44, 
Ronne Ice Shelf, Antarctica, http://ccrs.nrcan.gc.ca/radar/marine/calv00_e.php. 

Cotterell, B., and Rice, J. R., 1980, Slightly curved or kinked cracks: International 
Journal of Fracture, v. 16, no. 2, p. 155-169. 

Crouch, S. L., and Starfield, A. M., 1983, Boundary element methods in solid 
mechanics: London, George Allen & Unwin, 322 p. 

Dahm, T., 2000, Numerical simulations of the propagation path and the arrest of fluid-
filled fractures in the Earth: Geophysical Journal Internationa, v. 141, no. 3, p. 623-
638. 

Davis, R. O., and Selvadurai, A. P. S., 1996, Elasticity and geomechanics: Cambridge, 
Cambridge University Press, 201 p. 

Degraff, J. M., and Aydin, A., 1987, Surface morphology of columnar joints and its 
significance to mechanics and direction of joint growth: Geological Society of 
America Bulletin, v. 99, no. 5, p. 605-617  

Erdogan, F., and Sih, G. C., 1963, On the crack extension in plates under plane loading 
and transverse shear: Journal of Basic Engineering, v. 85, p. 516-27. 

Fahnestock, M. A., Scambos, T. A., Bindschadler, R. A., and Kvaran, G., 2000, A 
millennium of variable ice flow recorded by the Ross Ice Shelf, Antarctica: Journal 
of Glaciology, v. 46, no. 155, p. 632-664. 

Fastook, J. L., and Schmidt, W. F., 1982, Finite element analysis of calving from ice 
fronts: Annals of Glaciology, v. 3, p. 103-106. 



Ferrigno, J. G., Foley, K. M., Swithinbank, C., Williams, R. S. J., and Dailide, L. M., 
2005, Coastal-Change and Glaciological Map of the Ronne Ice Shelf Area, 
Antarctica: 1974-2002: USGS, I-2600-D. 

Fleming, R. W., and Johnson, A. M., 1989, Structures associated with strike-slip; Faults 
that bound landslide elements: Engineering Geology, v. 27, p. 39-114. 

Fricker, H. A., Bassis, J. N., Minster, J. B., and MacAyeal, D. R., 2005, ICESat's new 
perspective on ice shelf rifts: The vertical dimension: Geophysical Research Letters, 
v. 32, no. 23. 

Giovinetto, M. B., and Zwally, H. J., 2000, Spatial distribution of net surface 
accumulation on the Antarctic ice sheet: Annals of Glaciology, v. 31, p. 171-178. 

Griffith, A. A., 1921, The Phenomena of Rupture and Flow in Solids: Philosophical 
Transactions of the Royal Society of London, v. A221, p. 163-198. 

Hambrey, M. J., and Müller, F., 1978, Structures and ice deformation in the White 
Glacier, Axel Heiberg Island, Northwest Territories, Canada: Journal of Glaciology, 
v. 20, no. 82, p. 41-66. 

Haran, T., Bohlander, J., Scambos, T. A., and Fahnestock, M., 2005, MODIS mosaic of 
Antarctica (MOA) image map: National Snow and Ice Data Center, Boulder, 
Colorado. 

Harrison, W. D., Echelmeyer, K. A., and Larsen, C. F., 1998, Measurement of 
temperature in a margin of the Ice Stream B, Antarctica: Implications for margin 
migration and lateral drag: Journal of Glaciology, v. 44, no. 148, p. 615-624. 

Hooke, R. L., 1998, Principles of glacier mechanics: Upper Saddle River, New Jersey, 
Prentice Hall, 248 p. 

Hughes, T., 1983, On the disintegration of ice shelves: the role of fracture: Journal of 
Glaciology, v. 29, no. 101, p. 98-117. 

Hughes, T. J. R., 2000, The finite element method: linear static and dynamic finite 
element analysis: Mineola, NY, Dover, 682 p. 

Hutter, K., 1983, Theoretical glaciology : material science of ice and the mechanics of 
glaciers and ice sheets: Boston Dordrecht 510 p. 

Inglis, C. E., 1913, Stresses in a plate due to the presence of cracks and sharp corners: 
Transactions of the Institute of Naval Architects, v. 55, p. 219-241. 

Ingraffea, A. R., 1987, Theory of crack initiation and propagation in rock, in Atkinson, 
B. K., ed., Fracture mechanics of rock: London, Academic Press, p. 71-110. 

Irwin, G. R., 1957, Analysis of stresses and strains near the end of a crack traversing a 
plate: Journal of Applied Mechanics, v. 24, p. 361-364. 

Jacobs, S. S., Hellmer, H., Doake, C. S. M., Jenkins, A., and Frolich, R., 1992, Melting 
of ice shelves and the mass balance of Antarctica: Journal of Glaciology, v. 38, no. 
130, p. 375-387. 

  154 



Jenkins, A., and Doake, C. S. M., 1991, Ice-ocean interaction on Ronne Ice Shelf, 
Antarctica: Journal of Geophysical Research, v. 96, p. 791– 813. 

Jones, P. C., Johnson, A. C., von Frese, R. R. B., and Corr, H., 2002, Detecting rift 
basins in the Evans Ice Stream region of West Antarctica using airborne gravity 
data: Tectonophysics, v. 347, no. 1, p. 25-41. 

Joughin, I., and Padman, L., 2003, Melting and freezing beneath the Filchner-Ronne Ice 
Shelf, Antarctica: Geophysical Research Letters, v. 30, no. 9, p. 4. 

Kanninen, M. F., and Popelar, C. H., 1985, Advanced Fracture Mechanics: New York, 
Oxford University Press, 563 p. 

King, E. C., and Bell, A. C., 1999, Deep crustal seismic investigation of the Evans Ice 
Stream and Haag Nunataks, Antarctica [abs.], in Eighth International Symposium 
on Antarctic Earth Sciences, Wellington, New Zealand, July 5-9, 1999, p. 171. 

Larour, E., Rignot, E., and Aubry, D., 2004, Modelling of rift propagation on Ronne Ice 
Shelf, Antarctica, and sensitivity to climate change: Geophysical Research Letters, 
v. 31, no. L16404. 

Larour, E., Rignot, E., Joughin, I., and Aubry, D., 2005, Rheology of the Ronne Ice 
Shelf, Antarctica, inferred from satellite radar interferometry data using an inverse 
control method: Geophysical research letters, v. 32, no. 5, p. L05503. 

Lawn, B. R., and Wilshaw, T. R., 1975, Fracture of brittle solids: Cambridge, 
Cambridge University Press. 

Lazzara, M. A., Jezek, K. C., Scambos, T. A., MacAyeal, D. R., and van der Veen, C. 
J., 1999, On the recent calving of icebergs from the Ross Ice Shelf: Polar 
Geography, v. 23, no. 3, p. 201-212. 

Lythe, M. B., Vaughan, D. G., and Consortium, t. B., 2000, BEDMAP bed topography 
of the Antarctic 1:10,000,000 scale: British Antarctic Survey (Misc) 9. 

Meier, M. F., 1994, Columbia Glacier during rapid retreat: interactions between glacier 
flow and iceberg calving dynamics, in Proceedings, Workshop on the Calving Rate 
of West Greenland Glaciers in Response to Climate Change, N. Reeh (Ed.), Danish 
Polar Center, Copenhagen, p. 171. 

Mellor, M., 1975, A Review of Basic Snow Mechanics, Snow Mechanics Symposium; 
Proceeding of the Grindelwald Symposium, Grindelwald, Bernese Oberland 
(Switzerland) April 1974: International Association of Hydrological Sciences 
Publication No. 114, p. 251-291. 

Mercer, J. H., 1978, West Antarctic ice sheet and CO2 greenhouse effect: a threat of 
disaster: Nature, v. 271, p. 321 - 325. 

Merry, C. J., and Whillans, I. M., 1993, Ice-flow features on Ice Stream B, Antarctica, 
revealed by SPOT HRV imagery: Journal of Glaciology, v. 39, no. 133, p. 515-527. 

  155 



Muskhelishvili, N. I., 1963, Some basic problems of the mathematical theory of 
elasticity; fundamental equations, plane theory of elasticity, torsion, and bending: 
Groningen, Holland, P. Noordhoff Ltd., 718 p. 

Nemat-Nasser, S., Oranratnachai, A., and Keer, L. M., 1979, Spacing of water-free 
crevasses Journal of Geophysical Research, v. 84, no. B9, p. 4611-4620. 

Nye, J. F., 1953, The Flow Law of Ice from Measurements in Glacier Tunnels, 
Laboratory Experiments and the Jungfraufirn Borehole Experiment: Proceedings of 
the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 219, 
no. 1139, p. 477-489. 

-, 1957, The Distribution of Stress and Velocity in Glaciers and Ice-Sheets: Proceedings 
of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 
239, no. 1216, p. 113-133. 

Olson, J., and Pollard, D. D., 1989, Inferring paleostresses from natural fracture 
patterns: A new method: Geology, v. 17, no. 4, p. 345-348. 

Palmer, A. C., and Rice, J. R., 1973, The growth of slip surfaces in the progressive 
failure of over-consolidated clay: Proceedings of the Royal Society of London. 
Series A, Mathematical and Physical Sciences, v. 332, no. 1591, p. 527-548. 

Paris, P. C., and Sih, G. C., 1965, Stress analysis of cracks, in Fracture Toughness 
Testing and Its Applications: ASTM Special Technical Publication, v. 381, p. 30–
76. 

Paterson, W. S. B., 1994, The physics of glaciers: Woburn, Butterworth Heinemann. 

Pollard, D. D., and Aydin, A., 1988, Progress in understanding jointing over the past 
century: GSA Bulletin, v. 100, no. 8, p. 1181 - 1204. 

Pollard, D. D., and Segall, P., 1987, Theoretical displacements and stresses near 
fractures in rock: with applications to faults, joints, veins, dikes, and solution 
surfaces, in Atkinson, B. K., ed., Fracture mechanics of rocks: London, Harcourt 
Brace Jovanovich, p. 277-349. 

Reeh, N., 1968, On the calving of ice from floating glaciers and ice shelves: Journal of 
Glaciology, v. 7, no. 50, p. 215-232. 

Rignot, E., 2001, Evidence for rapid retreat and mass loss of Thwaites Glacier, West 
Antarctica: Journal of Glaciology, v. 47, no. 157, p. 213-222. 

Rist, M. A., Sammonds, P. R., Murrell, S. A. F., Meredith, P. G., Doake, C. S. M., 
Oereter, H., and Matsuki, K., 1999, Experimental and theoretical fracture mechanics 
applied to Antarctic ice fracture and surface crevassing: Journal of Geophysical 
Research, v. 104, no. B2, p. 2973-2987. 

Rist, M. A., Sammonds, P. R., Oereter, H., and Doake, C. S. M., 2002, Fracture of 
Antarctic shelf ice: Journal of Geophysical Research, v. 107, no. 0. 

Sandhager, H., Vaughan, D. G., and Lambrecht, A., 2004, Meteoric, marine, and total 
ice thickness maps of Filchner-Ronne-Schelfeis, Antarctica, FRISP Report No. 15: 

  156 



Bremerhaven, Germany, Alfred-Wegener Inst. fur Polar und Meeresforsch., p. 22-
30. 

Scambos, T. A., Hulbe, C., Fahnestock, M., and Bohlander, J., 2000, The link between 
climate warming and break-up of ice shelves in the Antarctic Peninsula: Journal of 
Glaciology, v. 46, no. 154, p. 516-530. 

Sempere, J. C., and Macdonald, K. C., 1986, Overlapping spreading centers: 
implications from crack growth simulation by the displacement discontinuity 
method: Tectonics, v. 5, no. 1, p. 151-163. 

Sih, G. C., 1966, On the westergaard method of crack analysis: International Journal of 
Fracture, v. 2, no. 4, p. 628-631. 

-, 1973, Handbook of stress-intensity factors: Stress-intensity factor solutions and 
formulas for reference: Bethlehem, Lehigh University, 815 p. 

Smith, R. A., 1976, The application of fracture mechanics to the problem of crevasse 
penetration: Journal of Glaciology, v. 17, p. 223-228. 

Stephenson, S. N., 1984, Glacier flexure and the position of grounding lines: 
measurements by tiltmeter on Rutford Ice Stream, Antarctica: Annals of Glaciology, 
v. 5, p. 165-169. 

Tada, H., Paris, P. C., and Irwin, G. R., 2000, The stress analysis of cracks handbook: 
New York, ASME Press: Professional Engineering Publication: ASM International, 
677 p. 

Thomas, A. L., 1991, FRAC2D, Stanford University. 

Thomas, R. H., Sanderson, T. J. O., and Rose, K. E., 1979, Effect of climatic warming 
on the West Antarctic ice sheet: Nature, v. 277, p. 355 - 358. 

Timoshenko, S., and Goodier, J. N., 1969, Theory of elasticity, Engineering societies 
monographs: New York, McGraw-Hill, 567 p. 

van der Veen, C. J., 1996, Tidewater calving: Journal of Glaciology, v. 42, no. 141, p. 
375-385. 

-, 1998, Fracture mechanics approach to penetration of surface crevasses on glaciers: 
Cold Regions Science and Technology, v. 27, p. 31-47. 

Vaughan, D. G., 1995, Tidal flexure at ice shelf margins: Journal of Geophysical 
Research, v. 100, no. B4, p. 6213-6224. 

Vieli, A., Funk, M., and Blatter, H., 2001, Flow dynamics of tidewater glaciers: a 
numerical modelling approach Journal of Glaciology, v. 47, no. 159, p. 595-606. 

Weertman, J., 1973, Can a water-filled crevasse reach the bottom surface of a glacier, in 
Proceedings of Symposium on the Hydrology of Glaciers, September 7-13, 1969, 
Cambridge, England, p. 139-145. 

Westergaard, H. M., 1939, Bearing pressures and cracks: Transactions of the American 
Society of Mechanical Engineers, v. 61, p. A49-A53. 

  157 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX 

 

  158 



A Root-Mean Square Errors 

Table A.1 Root-mean square errors for calibration of Experiment 1. Unless noted, remote stresses are Mxx 
= 1.2 MPa, Myy = 1.9 MPa, and  Mxy = -0.1 MPa, and the scaling factor 0.8ℑ = . 

 
Poisson's 
Ratio

Elasticity Modulus, 
MPa

Root-Mean 
Square Error Comments

0.27 6500 375.40
0.27 7000 129.17
0.27 7400 164.28
0.27 7500 78.05
0.27 7600 231.61
0.27 8000 1865.18
0.28 7000 314.91
0.28 7500 734.92
0.28 8000 334.38
0.29 8000 427.45
0.29 9000 419.18  

 

 
Table A.2 Root-mean square errors for calibration of Experiment 2 simple boundary. Unless noted, 
remote stresses are Mxx == 0.9 MPa, Myy = 1.8 MPa, and  Mxy = -0.3 MPa, and the scaling factor 0.8ℑ = . 

 
Poisson's 
Ratio

Elasticity Modulus, 
MPa

Root-Mean 
Square Error Comments

0.27 7500 117.18
0.27 8000 198.90
0.28 7500 418.05
0.28 8000 185.24
0.28 8500 227.21
0.29 8000 85.34

0.29 8000 278.34
3km step size along boundary 
instead of 2km

0.29 8500 128.38  
 
 
 



Table A.3 Root-mean square errors for calibration of Experiment 2 extended boundary. Unless noted, 
remote stresses are Mxx == 0.9 MPa, Myy = 1.8 MPa, and  Mxy = -0.3 MPa, and the scaling factor 0.8ℑ = . 
This boundary was not used in the propagation simulation. 

 
Poisson's 
Ratio

Elasticity Modulus, 
MPa

Root-Mean 
Square Error Comments

0.27 7500 166.25
0.27 8000 170.16
0.28 7500 372.08
0.28 8000 358.22
0.29 7500 234.94
0.29 8000 641.08
0.29 8000 201.31 changed remote stress

0.29 8000 200.23
3km step size along boundary 
instead of 2km  

 

Table A.4 Root-mean square errors for calibration of Experiment 3 simple boundary. Unless noted, 
remote stresses are Mxx == 0.9 MPa, Myy = 1.8 MPa, and  Mxy = -0.3 MPa, and the scaling factor 0.8ℑ = . 

 
Poisson's 
Ratio

Elasticity Modulus, 
MPa

Root-Mean 
Square Error Comments

0.25 10000 164.86
0.26 8000 142.08
0.27 7500 85.97
0.27 8000 69.46
0.28 7500 246.58
0.28 8000 48.66
0.28 8000 64.65 0.9
0.28 8000 91.42 1
0.28 8000 137.08 0.9, no remote stresses
0.28 8500 168.41
0.28 9000 57.44
0.28 10000 1397.33
0.29 8000 188.06
0.29 8500 121.46
0.3 8000 176.98
0.3 9000 106.53
0.3 10000 605.54

0.33 10000 306.70  
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Table A.5 Root-mean square errors for calibration of Experiment 3 extended boundary. Unless noted, 
remote stresses are Mxx == 0.9 MPa, Myy = 1.8 MPa, and  Mxy = -0.3 MPa, and the scaling factor 0.8ℑ = . 

 
Poisson's 
Ratio

Elasticity Modulus, 
MPa

Root-Mean 
Square Error Comments

0.27 7500 146.39
0.27 8000 66.12
0.27 8000 47.43 0.9
0.28 7500 232.53
0.28 8000 80.01
0.29 7500 113.96
0.29 7500 87.89 0.9, remote stress, 1 -0.35 1.9
0.29 7500 113.96
0.29 8000 157.41  

 

Table A.6 Root-mean square errors for calibration of Experiment 4 upstream boundary. Unless noted, 
remote stresses are Mxx == 0.9 MPa, Myy = 1.8 MPa, and  Mxy = -0.3 MPa, and the scaling factor 0.8ℑ = . 
Model setup in bold is used for propagation simulation. 

Poisson's 
Ratio

Elasticity Modulus, 
MPa

Root-Mean 
Square Error Comments

0.25 7500 111.51 0.85
0.26 7500 113.02 0.85
0.27 7000 114.82 0.85
0.27 7500 114.98 0.8
0.27 7500 113.43 0.9
0.27 7500 110.91 0.85
0.27 8000 115.83 0.8
0.28 8000 115.94 0.8
0.28 8500 114.99 0.8  

 

Table A.7 Root-mean square errors for calibration of Experiment 4 downstream boundary. Unless noted, 
remote stresses are Mxx == 0.9 MPa, Myy = 1.8 MPa, and  Mxy = -0.3 MPa, and the scaling factor 0.8ℑ = . 
This boundary was not used in the propagation simulation. 

Poisson's 
Ratio

Elasticity Modulus, 
MPa

Root-Mean 
Square Error Comments in text

0.26 9000 216.73 0.85
0.27 7500 217.82 0.85
0.27 8000 222.34 0.85
0.28 8000 215.49 0.85
0.28 8000 210.79 0.8

0.28 8000 212.11
added fxM5 and fxM6 as 
boundaries 0.8

0.28 8000 212.97 added only fxM5 as boundary 0.8
0.29 7500 218.31 0.85  
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Table A.8 Root-mean square errors for calibration of Experiment 4 downstream extended boundary. 
Unless noted, remote stresses are Mxx == 0.9 MPa, Myy = 1.8 MPa, and  Mxy = -0.3 MPa, and the scaling 
factor . This boundary not used in propagation simulation. 0.8ℑ =

Poisson's 
Ratio

Elasticity Modulus, 
MPa

Root-Mean 
Square Error Comments factor

0.26 7500 38181.89 remote stress, 0.85 -0.35 1.9 0.85
0.26 8000 1543.14 remote stress, 0.85 -0.35 1.9 0.85
0.26 9000 1404.20 remote stress, 0.85 -0.35 1.9 0.85
0.26 9000 1402.41 remote stress, 0.9 -0.3 1.8 0.85
0.26 10000 2727.47 remote stress, 0.85 -0.35 1.9 0.85
0.27 7500 8368.00 remote stress, 0.85 -0.35 1.9 0.85
0.27 8000 6212.48 remote stress, 0.85 -0.35 1.9 0.85
0.27 10000 2337.57 remote stress, 0.85 -0.35 1.9 0.85

0.26 9000 1325.07
remote stress, 0.9 -0.3 1.8. 
added fx M5 and M6, not active 0.8  

 

Table A.9 Root-mean square errors for calibration of Experiment 5 boundary. Unless noted, remote 
stresses are Mxx == 0.9 MPa, Myy = 1.6 MPa, and  Mxy = -0.1 MPa, and the scaling factor .  0.8ℑ =

Poisson's 
Ratio

Elasticity Modulus, 
MPa

Root-Mean 
Square Error Comments

0.27 7000 135.40
0.27 7000 178.53 0.9
0.27 7500 122.13
0.27 7500 164.50 0.9
0.27 8000 138.42
0.27 8000 199.33
0.28 8000 2997.91
0.27 7500 191.17 added J0  
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B Stress Intensity Factors 

 
 
Table B.1 Stress intensity factors for Experiment 1: Test fracture k1, fracture scaling factor . The 
fracture toughness K

0.8ℑ =
IC was 0.1 MPa m1/2. The iteration number designates distinct model runs within a 

single test. The first iteration uses boundary stresses defined for the test, based on the model calibration 
and relevant scaling factors for domain and fracture boundaries. Each subsequent iteration uses the 
boundary stresses and computed during the previous iteration and any incremental growth in fracture 
geometry. K1 and K2 represent the stress intensity factors computed at the tip for propagation modes I 
and II, respectively. Angle θ0 is the predicted angle of propagation for mixed-mode loading, in degrees. 
The mixed-mode failure criterion is based on the ( )maxσ θ  theory (Erdogan and Sih, 1963). If the value 
listed as Failure exceeds 1, propagation occurs. 

Right tip Left tip

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 -0.361 0.000 0.00 -3.61 -0.155 0.000 0.00 -1.55

Iteration 
Number

 
 
 

Table B.2 Stress intensity factors for Experiment 1: Test fracture k1, fracture scaling factor . 
The fracture toughness K

0.75ℑ =
IC was 0.3 MPa m1/2. Refer to Table B.1 for description of headings. 

Right tip Left tip

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 0.361 0.000 0.00 1.20 0.465 0.414 -51.26 2.59
2 0.361 0.000 0.00 1.20 0.827 -0.827 53.13 4.93
3 0.722 0.000 0.00 2.41 0.724 0.414 -43.01 3.26
4 0.722 0.000 0.00 2.41 1.241 -0.414 31.37 4.73
5 0.722 0.000 0.00 2.41 1.345 0.414 -29.64 5.04
6 1.083 0.000 0.00 3.61 1.655 -0.414 25.33 5.99
7 1.083 0.000 0.00 3.61 1.862 0.414 -23.04 6.63
8 1.083 0.000 0.00 3.61 2.482 -0.414 17.99 8.60
9 1.443 0.000 0.00 4.81 2.689 0.000 0.00 8.96
10 2.165 0.000 0.00 7.22 3.103 0.414 -14.69 10.61
11 3.724 -0.827 23.04 13.26
12 3.930 0.827 -22.02 13.91

Iteration 
Number

 
 
 

Table B.3 Stress intensity factors for Experiment 2: Test fracture j3 and g6, 0.8ℑ = . The fracture 
toughness KIC was 0.1 MPa m1/2. 

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 0.00 0.351 undef undef 0.00 0.311 undef undef

Iteration 
Number

Test fracture j3 Test fracture g6

 
 
 



Table B.4 Stress intensity factors for Experiment 2: Test fracture j3 and g6, 0.75ℑ = . The fracture 
toughness KIC was 0.3 MPa m1/2. 

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 0.351 0.351 -53.13 2.09 0.000 0.311 0.00 0.00
2 -0.701 -0.438 -44.82 -3.27 0.000 0.311 0.00 0.00

Iteration 
Number

Test fracture j3 Test fracture g6

 
 

Table B.5 Stress intensity factors for Experiment 2: Test fracture j3 and g6, 0.7ℑ = . The fracture 
toughness KIC was 0.3 MPa m1/2.  

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 0.701 0.000 0.00 2.34 0.00 0.00 0.00 0.00
2 0.701 0.000 0.00 2.34 0.00 0.00 0.00 0.00
3 0.701 0.000 0.00 2.34 0.00 0.00 0.00 0.00
4 0.701 0.000 0.00 2.34 0.00 0.00 0.00 0.00
5 0.701 0.000 0.00 2.34 0.00 0.00 0.00 0.00
6 0.701 -0.351 40.21 3.00 0.00 0.00 0.00 0.00
7 0.570 1.052 -60.62 5.18 0.00 0.00 0.00 0.00
8 0.701 -0.526 48.30 3.57 0.00 0.00 0.00 0.00
9 0.438 0.701 -59.19 3.58 0.00 0.00 0.00 0.00

Iteration 
Number

Test fracture j3 Test fracture g6

 
 

Table B.6 Stress intensity factors for Experiment 3: Test fracture s6, 0.8ℑ = . The fracture toughness KIC 
was 0.1 MPa m1/2. 

Right tip Left tip

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 -0.503 0.251 40.21 -6.45 -0.443 0.354 49.46 -6.99

Iteration 
Number
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Table B.7 Stress intensity factors for Experiment 3: Test fracture s6, 0.75ℑ = . The fracture toughness 
KIC was 0.15 MPa m1/2. 

Right tip Left tip

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 0.063 0.000 0.00 0.42 0.177 0.000 0.00 1.18
2 0.063 0.000 0.00 0.42 0.177 0.000 0.00 1.18
3 0.126 0.000 0.00 0.84 0.177 0.000 0.00 1.18
4 0.126 0.000 0.00 0.84 0.177 0.000 0.00 1.18
5 0.126 0.000 0.00 0.84 0.266 0.000 0.00 1.77
6 0.126 0.000 0.00 0.84 0.266 0.000 0.00 1.77
7 0.126 0.126 -53.13 1.50 0.266 0.000 0.00 1.77
8 -0.754 -0.188 -25.33 -5.45 0.266 0.000 0.00 1.77
9 -0.754 -0.188 -25.33 -5.45 0.266 0.000 0.00 1.77

10 -0.754 -0.188 -25.33 -5.45 0.354 0.000 0.00 2.36
11 -0.754 -0.188 -25.33 -5.45 0.354 0.000 0.00 2.36
12 -0.754 -0.220 -28.51 -5.59 0.354 0.000 0.00 2.36
13 -0.503 -0.220 -37.32 -4.11 0.443 0.000 0.00 2.95
14 -0.503 -0.220 -37.32 -4.11 0.443 0.000 0.00 2.95
15 -0.503 -0.220 -37.32 -4.11 0.531 0.000 0.00 3.54

Iteration 
Number

 
 
 
Table B.8 Stress intensity factors for Experiment 3: Test fracture s6, 0.75ℑ = . The fracture toughness 
KIC was 0.3 MPa m1/2. 

Right tip Left tip

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 0.063 0.000 0.00 0.21 0.177 0.000 0.00 0.59

Iteration 
Number

 
 

Table B.9 Stress intensity factors for Experiment 3 extended-boundary: Test fracture s4, . The 
fracture toughness K

0.8ℑ =
IC was 0.3 MPa m1/2. 

Right tip Left tip

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 0.245 -0.245 53.13 1.46 0.575 -0.288 40.21 2.46
2 -0.184 0.980 66.99 -4.12 0.252 0.575 -62.44 2.70
3 -0.184 0.980 66.99 -4.12 0.575 -0.288 40.21 2.46
4 -0.122 0.980 68.16 -4.00 0.575 0.575 -53.13 3.43
5 -0.122 0.980 68.16 -4.00 0.000 -0.431 0.00 0.00

Iteration 
Number
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Table B.10 Stress intensity factors for Experiment 3 extended-boundary: Test fracture s4, . The 
fracture toughness K

0.75ℑ =
IC was 0.3 MPa m1/2. 

Right tip Left tip
K1 K2    angle failure K1 K2 angle failure

1 0.490 -0.245 40.21 2.09 0.575 -0.288 40.21 2.46
2 0.310 0.980 -64.62 4.36 0.476 0.575 -55.83 3.20
3 0.000 -0.367 0.00 0.00 0.575 -0.288 40.21 2.46
4 0.000 -0.367 0.00 0.00 0.719 0.575 -49.46 3.78
5 0.000 -0.367 0.00 0.00 0.575 -0.431 48.30 2.93
6 0.490 -0.367 48.30 2.49 0.863 0.575 -46.09 4.15
7 0.612 0.490 -49.46 3.22 0.575 -0.575 53.13 3.43
8 0.000 -0.612 0.00 0.00 0.935 0.575 -44.51 4.34
9 0.000 -0.612 0.00 0.00 0.863 -0.288 31.37 3.29
10 0.000 -0.612 0.00 0.00 1.150 0.575 -40.21 4.92
11 0.490 -0.612 56.28 3.37 1.150 -0.575 40.21 4.92
12 0.857 0.490 -43.01 3.86 1.438 0.000 0.00 4.79
13 0.490 -0.490 53.13 2.92 1.438 0.575 -35.36 5.73
14 0.764 0.490 -45.32 3.61 1.438 -0.575 35.36 5.73
15 0.980 -0.245 25.33 3.54 1.725 0.575 -31.37 6.57
16 1.102 0.490 -37.66 4.53 1.725 -0.575 31.37 6.57
17 0.735 -0.735 53.13 4.38 2.013 0.575 -28.07 7.44
18 1.072 0.490 -38.28 4.45 2.013 -0.575 28.07 7.44
19 0.980 -0.245 25.33 3.54 2.444 0.575 -24.14 8.77
20 1.225 0.490 -35.36 4.88 2.588 -0.288 12.38 8.78

Iteration 
Number

 
 

 
Table B.11 Stress intensity factors for Experiment 3 extended-boundary: Test fracture z2, . The 
fracture toughness K

0.85ℑ =
IC was 0.3 MPa m1/2. 

Right tip Left tip

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 -0.255 -0.509 -61.34 -2.46 0.288 -0.288 53.13 1.71
2 -0.255 -0.509 -61.34 -2.46 -0.072 0.575 68.16 -2.35

Iteration 
Number
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Table B.12 Stress intensity factors for Experiment 3 extended-boundary: Test fracture z2, . The 
fracture toughness K

0.8ℑ =
IC was 0.3 MPa m1/2. 

Right tip Left tip

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 0.000 -0.509 0.00 0.00 0.575 -0.288 40.21 2.46
2 0.000 -0.509 0.00 0.00 0.485 0.575 -55.58 3.22
3 0.000 -0.509 0.00 0.00 0.575 -0.288 40.21 2.46
4 0.000 -0.509 0.00 0.00 0.719 0.575 -49.46 3.78
5 0.255 -0.509 61.34 2.46 0.575 -0.431 48.30 2.93
6 -0.255 0.509 61.34 -2.46 0.719 0.575 -49.46 3.78
7 -0.255 0.509 61.34 -2.46 0.575 -0.575 53.13 3.43
8 -0.255 0.509 61.34 -2.46 0.863 0.575 -46.09 4.15
9 -0.255 0.509 61.34 -2.46 0.575 -0.575 53.13 3.43
10 -0.255 0.509 61.34 -2.46 0.791 0.575 -47.74 3.96
11 -0.255 0.764 64.31 -3.43 0.863 -0.288 31.37 3.29
12 -0.255 0.764 64.31 -3.43 1.006 0.575 -43.01 4.53
13 -0.255 0.764 64.31 -3.43 0.575 -0.575 53.13 3.43
14 0.000 0.764 0.00 0.00 1.150 0.575 -40.21 4.92
15 0.000 0.764 0.00 0.00 1.150 -0.288 25.33 4.16
16 0.000 0.764 0.00 0.00 1.438 0.288 -21.09 5.06
17 0.000 0.764 0.00 0.00 1.438 -0.288 21.09 5.06
18 0.000 0.764 0.00 0.00 1.438 0.288 -21.09 5.06
19 0.000 0.764 0.00 0.00 1.725 -0.288 17.99 5.98
20 0.000 1.018 0.00 0.00 1.725 0.288 -17.99 5.98

Iteration 
Number

 
 
 

Table B.13 Stress intensity factors for Experiment 4: Test fracture N1, 0.8ℑ = . The fracture toughness 
KIC was 0.3 MPa m1/2. 

K1 K2 Angle θ0 Failure K1 K2 Angle θ0 Failure
1 -0.003 1.027 70.48 -3.96 0.278 0.907 -64.79 4.02
2 -0.004 1.001 70.45 -3.86 -0.307 -0.473 -58.79 -2.44

Iteration 
Number

Right tip Left tip
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Table B.14 Stress intensity factors for Experiment 4: Test fracture N1, 0.75ℑ = . The fracture toughness 
KIC was 0.3 MPa m1/2. 

Right tip Left tip
K1 K2 angle failure K1 K2    angle failure

1 0.617 0.878 -57.88 4.63 0.350 1.001 -64.02 4.53
2 0.037 -0.640 69.42 2.53 -0.301 -0.565 -60.77 -2.77
3 0.548 0.341 -44.76 2.56 -0.275 -0.582 -61.82 -2.78
4 0.354 -0.531 58.49 2.76 -0.264 -0.600 -62.40 -2.82
5 0.324 0.706 -62.06 3.35 -0.235 -0.611 -63.38 -2.81
6 0.307 -0.485 59.05 2.48 -0.221 -0.623 -63.92 -2.82
7 0.422 0.608 -58.03 3.20 -0.195 -0.637 -64.80 -2.82
8 0.294 -0.542 60.61 2.67 -0.184 -0.651 -65.25 -2.86
9 0.448 0.608 -57.33 3.25 -0.161 -0.666 -65.99 -2.87
10 0.374 -0.525 57.71 2.78 -0.143 -0.680 -66.56 -2.89
11 0.516 0.628 -55.93 3.48 -0.118 -0.694 -67.33 -2.89
12 0.472 -0.539 55.08 3.06 -0.098 -0.709 -67.92 -2.91
13 0.648 0.643 -52.99 3.85 -0.072 -0.729 -68.66 -2.94
14 0.625 -0.582 52.03 3.57 -0.043 -0.746 -69.43 -2.95
15 0.843 0.674 -49.45 4.43 -0.011 -0.766 -70.24 -2.97
16 0.860 -0.643 48.24 4.37 0.026 -0.786 69.90 3.07
17 1.165 0.734 -45.00 5.46 0.823 0.232 -27.82 3.04
18 1.278 -0.723 42.80 5.73 0.776 -0.364 38.85 3.25
19 1.641 0.795 -39.52 6.94 0.634 0.843 -57.07 4.54
20 1.813 -0.792 37.28 7.41 0.481 -0.680 57.81 3.59
21 2.209 0.864 -34.85 8.75 0.691 0.709 -53.50 4.18
22 2.461 -0.838 31.82 9.42 0.552 -0.691 56.30 3.80
23 2.846 0.947 -31.32 10.84 0.674 0.792 -55.45 4.45
24 3.202 -0.800 25.33 11.59 0.587 -0.683 55.33 3.85
25 3.489 1.268 -33.26 13.56 0.651 0.803 -56.11 4.43

Iteration 
Number
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Table B.15 Stress intensity factors for Experiment 5: Test fracture J5, 0.8ℑ = . The fracture toughness 
KIC was 0.3 MPa m1/2. 

Right tip Left tip
K1 K2 angle failure K1 K2    angle failure

1 0.704 -0.176 25.33 2.55 1.413 -0.442 29.97 5.31
2 0.704 0.308 -37.32 2.88 1.060 0.442 -36.25 4.27
3 0.704 -0.352 40.21 3.01 1.413 -0.353 25.33 5.11
4 0.704 0.352 -40.21 3.01 1.060 0.364 -32.04 4.07
5 0.704 -0.352 40.21 3.01 1.413 -0.530 33.94 5.54
6 0.704 0.352 -40.21 3.01 1.413 0.472 -31.41 5.39
7 0.704 -0.176 25.33 2.55 1.590 -0.353 23.04 5.66
8 0.704 0.044 -7.10 2.36 1.413 0.309 -22.74 5.03
9 0.704 0.000 0.00 2.35 1.767 -0.353 21.09 6.22
10 0.704 0.088 -13.84 2.40 1.767 0.309 -18.79 6.15
11 0.704 -0.176 25.33 2.55 1.944 -0.353 19.43 6.78
12 0.352 0.237 -46.24 1.70 2.120 0.353 -17.99 7.35
13 0.528 -0.176 31.37 2.01 2.120 -0.353 17.99 7.35
14 0.704 0.440 -44.82 3.29 2.120 0.398 -19.95 7.42
15 1.233 -0.352 28.07 4.56 2.474 -0.353 15.65 8.49
16 1.761 0.352 -21.09 6.20 2.474 0.265 -11.96 8.38
17 2.817 -0.176 7.10 9.45 2.827 -0.177 7.10 9.48
18 2.827 0.353 -13.84 9.64
19 3.004 -0.353 13.07 10.22
20 2.827 0.265 -10.53 9.55
21 3.180 -0.353 12.38 10.79
22 3.180 0.265 -9.40 10.71
23 3.357 -0.177 5.99 11.24
24 3.534 0.088 -2.86 11.79
25 3.534 -0.088 2.86 11.79
26 3.534 0.088 -2.86 11.79
27 3.710 -0.088 2.72 12.38
28 3.887 0.088 -2.60 12.97
29 3.887 -0.088 2.60 12.97
30 3.887 0.088 -2.60 12.97
31 4.240 -0.088 2.38 14.14
32 4.240 0.088 -2.38 14.14
33 4.417 -0.088 2.29 14.73
34 4.594 0.088 -2.20 15.32
35 4.594 0.000 0.00 15.31
36 4.770 0.000 0.00 15.90
37 4.947 0.000 0.00 16.49
38 5.124 0.000 0.00 17.08
39 5.124 0.000 0.00 17.08
40 5.300 0.000 0.00 17.67
41 5.477 0.000 0.00 18.26
42 5.654 0.088 -1.79 18.85
43 5.830 0.000 0.00 19.44
44 6.007 0.000 0.00 20.02
45 6.184 0.000 0.00 20.61
46 6.360 0.000 0.00 21.20
47 6.537 0.000 0.00 21.79
48 6.714 0.000 0.00 22.38

Iteration 
Number
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Table B.16 Stress intensity factors for Experiment 5: Test fractures J7 and A4, . The fracture 
toughness K

0.8ℑ =
IC was 0.3 MPa m1/2. 
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C MATLAB Scripts 

C.1   preview_data.m 

SCRIPT: preview_boundary.m 
  
REQUIRES functions: 
    fget_corner.m 
    find_index.m 
  
This script displays the boundary determined by corner coordinates 
associated with the input test name. Principal stresses, fractures, 
and relevant ice shelf features are displayed. The input file 
adj_stresses.mat contains only the full stresses required for the 
study area. 

Sample run with user input  

-- BEGIN SETUP -- 
Enter test name: Test5b 
Use filter 15x15 (15), no smoothing (0), or 20x20 (20)? 20 
  
Loading ice shelf stresses... 
Plot principal stresses (1), mean stresses (2), effective strain rate 
(3), or thickness (4): 1 
Enter figure number: 100 
Enter skip amount: 4 
Modify principal stresses (y/n)?: n 
Plotting principal stresses... 
 

C.2    get_export.m 

SCRIPT: get_export.m 
  
REQUIRES functions: 
    fget_corner.m 
    find_index.mb 
    fget_obs.m 
  
This script requires user input to setup variables needed for Frac2D 
code. The variables are setup so that each can be copied from the 
MATLAB array editor and pasted into the appropriate location in the 
Frac2D input file using a text editor. These variables for copy/paste 
are: 
        obs_lines:  observation lines 
        bd_lines:   boundary lines 
        fx_export:  fracture data - copy the first 8 columns. The 9th 
                    column stores the number corresponding to the 

entry of 



                    fracture name (ex. 'Enter fracture 1: A1'). Here, 
the 

                    9th column would store '1' and would correspond to 
                    fracture 'A1' which should be entered in the 

Frac2D 
                    input file. 
        nblines:    number of boundary lines (entered near beginning 

of 
                    Frac2D input file. 
  
Definition of variables that might correspond to columns in export 
data: 
  
        nblines:  number of boundary lines 
        num:      number of elements 
        xbeg:     beginning x-coord of element 
        ybeg:     beginning x-coord of element 
        xend:     ending x-coord of element 
        yend:     ending x-coord of element 
        kode:     kode=1 means that shear traction, ts, and normal 

traction, tn, 
                  are prescribed 
        bvs:      shear stress, MPa 
        bvn:      normal stress, Mpa 
 

Sample run with user input 

-- BEGIN SETUP -- 
Enter test name: test5b 
Use filter 15x15 (15) or 20x20 (20)? 20 
  
Loading ice shelf stresses... 
  
Enter figure number: 1 
Modify principal stresses? (y/n): y 
Enter factor by which to multiply principal stresses: 0.75 
Getting solution flag matrix... 
Computing new deviatoric stress tensor... 
Computing new full stresses... 
Getting export data... 
  
-- ENTER FRACTURE DATA -- 
  Expected fractures for selected test: s1, s2, or s3, s5 
Enter number of fractures: 1 
  
Available fracture names: 
   fxA0 
   fxB0 
   fxC0 
   fxD0 
   fxE0 
   fxF0 
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   ... 
   fxz7 
   fxz8 
   fxz9 
  
Enter fracture 1: fxs5 
  
Number of observation lines: 44 
Number of boundary lines: 40 
  
Filter: 20x20 
-- REMOTE STRESSES -- 
Mean boundary stresses: 0.95       1.731      -0.317 
Median boundary stresses: 0.876       1.732      -0.351 
  
Mean LEFT boundary stresses: 1.157      -0.138       1.869 
Mean BOTTOM boundary stresses: 0.967      -0.326       1.676 
Mean RIGHT boundary stresses: 0.828      -0.458       1.632 
Mean TOP boundary stresses: 0.864      -0.338       1.753  
 
 

C.3   read_outfile.m 

  SCRIPT: read_outfile.m 
  
  REQUIRES functions: 
    fread_out.m 
    fread_fracs.m 
    fread_obs.m 
        strip_obs.m 
        calc_gridded_results.m 
            angp.m 
            ave.m 
            sig1.m 
            sig2.m 
            taumax.m 
  
  This script reads the outfile from Frac2D. 
  
  variables: 
    fig_base:   requested input of power-10 base number for figure 
                numbering (ex. fig_base = 2, then fig 1 becomes fig 

21) 
    frac_info:  array holding stress info for fracture 
        1:      fracture number, using <check_fx_num> 
        2:      iteration number, using <iter_num> 
        3:      tip element number 
        4:      k1 
        5:      k2 
        6:      pangle 
        7:      failure 
        8:      fracture tip #, using <tip> 
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    fx:         array to hold fracture data for plotting 



        1:      x-coord 
        2:      y-coord 
        3:      boolean for original line element (0) or increment (1) 
        4:      iter num 
        5:      frac_num from fx_map 
        6:      line element number 
    has_data:   vector containing boolean values for presence of data 
        col 1:  frac_info 
        col 2:  fx_temp 
        col 3:  obs_temp 
    my_fx:      array to store fracture data for given iter # 
    my_vals:    array to store obs line data for specified iteration # 
    obs_file:   name of output file with obs line data for given iter 

# 
    pickfx:     fracture selected for display of stresses (string) 
    results_file:   gridded obs line and fracture data for given iter 

# 
    test_name:  All lookups and automated filenames will be 
                generated from the test name 
 

Sample run with user input 

Enter test name: Test5b4r 
Plot figures? (y/n): n 
  
  
   Reading data ... 
  
      Saving output files ... 
 

C.4   plot_data.m 

SCRIPT: plot_frac2d_results.m 
  
This script uses saved files from read_outfile.m. Specifically, files 
of the format 'Test2b_it1_test1_results.mat'. The results are loaded 
and through user input, different types of plots are generated for a 
selected test and iteration. 
  
  to get data from illustrator to km in matlab: 
  copy x, y data in pixels from illustrator 
  set to x, y 
  divide x, y by 8 to get data in km 
  
 * File format for plotting fracture data: 
   Array:   my_fx 
    1:  x 
    2:  y 
    3:  incr    1: line increment 
                0: original segment 
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    4:  iter_num 
    5:  fx_num 
    6:  elt 
 

Sample run with user input 

To plot mean stresses, or another variable using contours: 

Enter test name: Test5b8i 
Enter iteration number: 4 
Enter plot type (1: contour, 2: pcolor, 3: principal stresses): 1 
Plot which variable (S1, S2, tau, g_Sxx, g_Sxy, g_Syy, mean, theta; 
enter using  
 format {'S1',S1}), leave blank for default Mean: {'mean',mean} 
Enter figure base number (leave blank if none desired:  
2 
  
    Please wait a moment... 
  
   Carefully select contours for labeling. 
   When done, press RETURN while the Graph window is the active 
window. 
 
 
To plot principal stresses: 

Enter test name: Test5b8i 
Enter iteration number: 4 
Enter plot type (1: contour, 2: pcolor, 3: principal stresses): 3 
Enter skip amount (leave blank for default 4): 4 
Enter figure base number (leave blank if none desired:  
2 
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