Glacier Deformation and Flow

Jean Louis Rodolphe Agassiz (May 28, 1807 – December 14, 1873)

• **Dilatation Hypothesis** based on Scheuchzer, and by Charpentier, melt water and rain enter the glacier, refreezes, expands, enlarging the glacier down valley.

James David Forbes FRS (20 April 1809 – 31 December 1868)

• Viscous Hypothesis Measured flow, found it to be continuous, occurring over the entire glacier, variable from day to day, and week to week, fastest the middle and slowest on the sides. Abbe Rendu a cleric coined the theory 'viscous theory'

Juns Sincerely Vances D. Forles

Wikipedia

William Hopkins FRS (2 February 1793 – 13 October 1866)

• **Sliding Hypothesis** Proposed by Agassiz attributed to Gruner and to de Saussure, finally picked up by William Hopkins

John Tyndall Physicist FRS (2 August 1820 – 4 December 1893)

Tyndall visited the Alps mountains in 1856 for scientific reasons and ended up becoming a pioneering mountain climber. He visited the Alps almost every summer from 1856 onward. He lead of one of the early teams to reach the top of the Matterhorn (1868).

Known for his advocacy of **apparent viscosity and regelation processes** (in dispute with Faraday on regelation)

John Tyndall 1850

Wikipedia

Maps of Mer de Glace in 1957 by Tyndal

Observed flow: Plan and profile

- Plan View
 parabolic
- Vertical Profile
 - exponential
 - non-zero at the bed

	0.19
	0.18
	0.17
	0.16
	0.15
	0.14
	0.13
	0.12
	0.11
	0.1

Worthington Glacier UWyo, UC-Boulder

Surface Flow Direction

Balance velocity and discharge

• Discharge thru each cross-section:

Q (x) =
$$\Sigma$$
 (w_x b_x)

Balance (avg) velocity:
 v (x) = Q (x) / A (x)

• (wedge diagram)

steeper mass
 balance gradient →
 more mass transfer
 → higher Q and v

Submergence and emergence velocity

Fig. 9. Longitudinal profile showing surface velocity vectors and calculated bedrock profile. Vertical distances are exaggerated 2.5 times. Bedrock profile is calculated on the assumption that $\overline{u} = \overline{u}$. Surface and bedrock profiles and surface velocity vectors represent averages taken over the width of the glacier

Meier and Tangborn, 1965

How do glaciers move?

Driving Force:

Response:

 $\tau_{\rm b} = \rho {\rm ghsin} \, \alpha >$

1. Deformation

2. Sliding

3. Substrate deformation

Deformation: Ice is a visco-plastic

FLOW BEHAVIOR: MICROPHYSICS

Initial Deformation Processes

FLOW BEHAVIOR: MICROPHYSICS

Deformation Through Dislocations

Department of Material Science Cambridge University, UK

FLOW BEHAVIOR: MICROPHYSICS

Video Examples of Motion

http://www.msm.cam.ac.uk/doitpoms/tlplib/dislocations/index.php

Dislocation glide Dislocation motion

Effects on rheology

Dust Soluble impurities Crystal size Crystal orientation Temperature A $0 \circ C \quad 6.8 \times 10^{-15}$ $-45 \circ C \quad 7.3 \times 10^{-18}$

Effect of water content on rheology

FLOW BEHAVIOR: MACROSCALE

Ice Deformation

Univ Aber.

FLOW BEHAVIOR: MACROSCALE MODEL

From Paterson, 1994

FLOW BEHAVIOR: MACROSCALE MODEL

$$\frac{1}{2}\frac{du}{dz} = A[\rho g(h-z)sina)]^3$$

Flow up an Adverse Slope

Basal Sliding

FLOW BEHAVIOR: REGELATON PROCESS

FLOW BEHAVIOR: REGELATON PROCESS

Regelation Experiment in GERMAN!

Regelation film

FLOW BEHAVIOR: REGELATON PROCESS

Insight from geomorphology

Features exposed on recently deglaciated carbonate bedrock provide insights into geometry of subglacial drainage network.

FLOW BEHAVIOR: SUBGLACIAL TILL

Substrate Deformation Subglacial Till

FLOW BEHAVIOR: SUBGLACIAL TILL

Observed bed deformation

- Inferred from structures in till
- Measured from markers
 emplaced in
 basal sediment
 and recovered

$$u_{s} = \frac{A}{2} (\rho g sina)^{3} h^{4} + u_{b}$$
Deformation Sliding and/or bed deformation

Sliding

$$u_b = \frac{k\tau_b}{(\rho gh - P_w)^q}$$

 P_w is the subglacial water pressure

Deformation of subglacial till

$$\tau_c = P_e \tan \Phi + c$$

$$\dot{\varepsilon} = \frac{B(\tau_b - \tau_c)^a}{P_e}$$

- P_e effective pressure (pgh-P_w) Φ - friction angle
- c cohesion
- **B** constant
- a constant

UNSTEADY FLOW: Seasonal Velocity Change

Storglaciären, Sweden

Peter Jansson Stockholm University

UNSTEADY FLOW: Daily Velocity Change

Storglaciären Fredin, U. Stockholm

Effects of water pressure on sliding

Kinematic Waves

- Thickening increases
 depth linearly
- Depth increases stress linearly
- Stress increases strain (flow) exponentially
- Therefore, a pulse propagates through the glacier

Surging

VARIEGATED GLACIER

1963(?)

1965

Austin Post

http://www.youtube.com/watch?v=HZaknW8m6tl

The most famous set of contorted medial moraines in Alaska is that of the Susitna Glacier (Fig. 59). The 1941 photograph by Bradford Washburn (Fig. 59a) has been widely published. Figure 59b, taken twenty-five years later, shows the 59a. The generation of looped and folded moraine patterns by periodic surges of a valley glacier with steady-state tributary, Susitna Glacier, Alaska Range, 1941

