
Glacier Deformation and Flow



Jean Louis Rodolphe Agassiz (May 28, 1807 – December 14, 1873)

• Dilatation Hypothesis based on Scheuchzer, and by 
Charpentier, melt water and rain enter the glacier, refreezes, expands, 
enlarging the glacier down valley.

Wikipedia

Wikipedia

James David Forbes FRS (20 April 1809 – 31 December 1868)

• Viscous Hypothesis   Measured flow, found it to be continuous, 
occurring over the entire glacier, variable from day to day, and week to 
week, fastest the middle and slowest on the sides.  Abbe Rendu a cleric
coined the theory ‘viscous theory’



William Hopkins FRS (2 February 1793 – 13 October 1866)

• Sliding Hypothesis Proposed by Agassiz attributed to 
Gruner and to de Saussure, finally picked up by William Hopkins       

John Tyndall  Physicist FRS (2 August 1820 – 4 December 1893)

Tyndall visited the Alps mountains in 1856 for scientific reasons and 
ended up becoming a pioneering mountain climber. He visited the Alps 
almost every summer from 1856 onward. He lead of one of the early 
teams to reach the top of the Matterhorn (1868). 

Known for his advocacy of apparent viscosity and regelation 
processes (in dispute with Faraday on regelation)

John Tyndall 1850                           Maps of Mer de Glace in 1957 by Tyndal

Wikipedia
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Lambert Glacier
RadarSat, JPL
Ohio State U.

UTx-Austin
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Worthington Glacier
UWyo, UC-Boulder

Textbook Diagram
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Observed flow: Plan and profile

• Plan View
– parabolic

• Vertical Profile
– exponential
– non-zero at 

the bed
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Worthington Glacier
UWyo, UC-Boulder
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Surface Flow Direction
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Balance velocity and discharge

• Discharge thru each 
cross-section:

Q (x) =  ( wx bx )

• Balance (avg) velocity:
v (x) = Q (x) / A (x)

• (wedge diagram)
– steeper mass 

balance gradient 
more mass transfer 
 higher Q and v
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Submergence
and 

emergence
velocity

Meier and Tangborn, 1965
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How do glaciers move?

Driving Force:

Response: 1. Deformation

2. Sliding

3. Substrate deformation

ghsin αρτb 



Deformation:    Ice is a visco-plastic
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Initial Deformation Processes
Strain
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Department of Material Science
Cambridge University, UK

Deformation
Through

Dislocations

Grain 
Boundaries
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Point Defects
• Vacancy
• Substitution Solute
• Interstitial Solute

Department of Material Science
Cambridge University, UK

FLOW BEHAVIOR:  MICROPHYSICS



Video Examples of Motion

http://www.msm.cam.ac.uk/doitpoms/tlplib/dislocations/index.php

Dislocation glide
Dislocation motion
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Effects on rheology

Dust

Soluble impurities

Crystal size

Crystal orientation

Temperature        A
0 oC   6.8 x 10 -15

-45 oC   7.3 x 10 -18



Water content

so
ft

ne
ss

Ice becomes softer as 
water content 
increases

Effect of water content on rheology



Univ Aber.

Ice Deformation
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ghsin αρτ 
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Steady Flow of a Glacier

From Paterson, 1994
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Flow up an Adverse Slope



Regelation : requires a film of water

Ice

Substrate

FLOW

~ 10 cm
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Regelation : requires a film of water
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Regelation : requires a film of water
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Basal Sliding
Regelation : requires a film of water
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Regelation : requires a film of water
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Heat
melting
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Mass (water) 
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Regelation Experiment   ……in GERMAN!
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Regelation film

Sliding at the
bed involves
a film of water,
which may 
contain solutes.

Glacier Flow

Precipitation
Dissolution

Regelation Ice
FreezingMelting



Insight from geomorphology
Features exposed
on recently
deglaciated
carbonate bedrock
provide insights
into geometry
of subglacial
drainage network.

ice flow
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Substrate Deformation   Subglacial Till

cPeb  tan
Pe - effective pressure
Φ - friction angle
c    - cohesion
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Observed bed 
deformation

• Inferred from 
structures in till

• Measured from 
markers 
emplaced in 
basal sediment 
and recovered

Shear Plane?

Boulton et al
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Sliding
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Pw is the subglacial water pressure

Deformation of subglacial till

cPec  tan
Pe - effective pressure  (ρgh-Pw)
Φ - friction angle
c - cohesion
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UNSTEADY FLOW:  Seasonal Velocity Change

Storglaciären, Sweden

Peter Jansson
Stockholm University
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Storglaciären
Fredin, U. Stockholm

UNSTEADY FLOW: Daily Velocity Change
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Effects of water pressure on sliding
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Kinematic Waves

• Thickening increases 
depth linearly

• Depth increases 
stress linearly

• Stress increases 
strain (flow) 
exponentially

• Therefore, a pulse 
propagates through 
the glacier
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http://www.youtube.com/watch?v=HZaknW8m6tI

1963(?) 1965                                    Austin Post

VARIEGATED GLACIER
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Surging
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