

ABRASION V

Basal velocity

Oneonta, NY

Cornell Geology

South Cascade Glacier

K. Cruikshank

K. Cruikshank

http://www.youtube.com/watch?v=njTjfJcAsBg

Rieperbreen Glacier on Svalbard J. Gulley

Glacier Flour: a product of abrasion

Glacier de Argentiere British Geomorphological Research Group

Abrasion

Is the ice riding on the particles?

NO! The shear stress of the ice is one bar.

The ice flows around such particles

$$F = \frac{4}{3}\pi r^3 (\rho_r - \rho_i)g$$

Factors affecting abrasion

Concentration of debris

hardness of the rock

evacuation of fines

glacier velocity

 $\dot{A} = k F_n C U$

- k constant
- F contact force
- C concentration
- U_b basal ice velocity (sliding)

New Zealand, University of Cincinatti

Univer Aber.

Fig. 5.14 Modelled principal stresses in bedrock upstream of a step cavity. (A) Steady-state case, where water pressure the cavity $(P_w) = 2.1$ MPa. Principal stresses are at a maximum adjacent to the step. Downward-pointing arrows show the ve tical component of ice flow in the cavity roof. (B) Stress pattern associated with a sudden drop of water pressure to P_w 1.5 MPa. Note the dramatic increase in principal stresses and vertical ice velocities. (Modified from Iverson, 1991)

Montana State University/earthscape.org

Macroscopic Erosion

Erosion

 $\mathbf{A} = \mathbf{k} \mathbf{F}_{n} \mathbf{C} \mathbf{U}_{b}$

k - constant
F - contact force
C - concentration
U_b – basal ice velocity (sliding)

Sliding

$$u_b = \frac{j\tau_b}{\left(\rho gh - P_w\right)^q}$$

P_w is the subglacial water pressure where j and q are empically determined constants

Trough Erosion

- Erosion
 - ~ f (effective pressure)

effective pressure

= ice pressure – water pressure

Trough Evolution

- Modeled by Harbor (1992)
- Results in "realistic" erosion
- Sequence is less realistic

