Erosional Forms and
Landscapes







Many Forms







Process

Rotational Flow
Headwall
— Back movement

Floor
— Overdeepening

ELA
— Max. erosion

_—

Direction of ice flow
Frost weathering of backwall supplys
debris to the glacier surface

Bergschrund

Former surface debris (supraglacial) that has been covered
by snowfall and incorporated into the glacier

g =it The rock debris that is transported
Plucking maintains ; . S by the glacier is deposited at the
the steepnesss of : i snout to form a moraine ridge

the backwall and
supplys debris to the
base of the glacier

Abrasion deepens the basin

British Geomorphological Research Group




Cirque
Form
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Cirque
Orientation

e Any orientation Is
possible

— Commonly to NE In
Northern Hemisphere

Norweglan Dralnage Basins Swedish Drainage Basins
(Total 1122 glacier units ) (Total 369 glacier units)




Cirque Orientation
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Where Is the closest cirque to Portland?
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Arétes

e Jointing and
mass wasting
(two cirques)




Lake District, England Aréte des Domes de Miage

- e Y, - .
- 1 » ,?:- "‘_:" -

Mont Blanc Massif
http://fabriceb.verof.free.frfrandos/Dom_Miag/deroule.htm

Internet Geography, UK

http://www.bennett.karoo.net/topics/glaciation.html#Hely



Arétes and
Horns

 Jointing and
mass wasting
(two cirgues)

e Coalescence
of three or
more cirques
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ELA

e Cirqgue vs. valley
glacier

e Altitude
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Glacial buzz-saw: do average cirque
elevations - Cascade erosion?

modern glaciers ¢ | { cirque outlets

Swath2 7

e o — e S o S e, 4

Swath 1 7 , Swath 1
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Horizontal distance (km) 225t West Horizontal distance (km) 2%t

Figure 5. Cross-range trends in average glacier (left) and cirque outlet (nght) altitudes shown on the three topographic subswaths, Linear least-square l‘CgI‘CSbIEan of
cirque and glacier altitudes are shown as thick gray lines; slope and R? values are in Table 1.
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Cirques — the “glacial buzzsaw™

e Tectonic uplift, crustal strength vs. glaciation

e Hypothesis: hypsometric maxima correspond with
snowlines and glaciers (=1500m above snow line)
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The glacial buzzsaw -
how does it work?

The height of mountain ranges is limited by the sum of
the snowline altitude and the amplitude of glacial refief above the snowline.
While the snowline altitude depends on climate, the amplitude of glacial relief
is, according to a global topographic analysis, generally less than 1500 m.

Glacial erosion

Glacial relief

Snowline altitude
A

Fluvial erosion
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Roche Moutonee

A rock which has been shaped by ice flowing over it.

The side from which the ice came is smooth which
the side in the direction in which the ice departed is
steep and has been plucked by the ice.

This asymmetrical erosion
indicates the direction of ice
movement. It often has
striations (scratches)

The 18th-century Alpine explorer Horace-Bénédict de
Saussure coined the term 'roches moutonnées' in 1786. He
saw in these rocks a resemblance to the wigs that were
fashionable amongst French gentry in his era and which
were smoothed over with mutton fat (hence 'moutonnée’) so
as to keep the hair in place. The French term is often
incorrectly interpreted as meaning "sheep rock"Wikipedia
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Competing Hypothesis

A. Glacial Erosion

B. Preglacial weathering remnants

Topography of Roches Moutonnées depends on:
horizontal and vertical joints
lithology
modified by:
= glacial erosion
= weathering



Support for the Weathering Hypothesis

Non-Glacial Areas Glacial Areas
Forms that look like Roches Roches Moutonnées with
Moutonnées are found in little or no signs of glacial

non-glaciated areas such as erosion
East Africa and Australia

(Lindstroem, 1988)




Troughs

e “U” shaped

— X-section
area = f(Q)







Trough Erosion

V-shaped
valiey

A. Unglaciated
aphy i

topography Hom Aréte Medial

- moraine

; L O\ €9y

. .Y e % / :

! ‘ Nt %/ |
= 5 1{ v i % L ‘% rrp q\l'u!::r x
V7 A kg ™ ‘;\1

A
* oy oY i

B. Region during period of
maximum giaciation

Cirques

‘
Pater noster &
lakes ?

C. Giaciated topography



Trough Erosion




Trough
Evolution

Real form
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Trough
Evolution

e Real form

 Modeled
form
(Harbor,
1992,
GSAB)
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A-A Unglaciated Valley

Maximum Vertical

Ice Extent

A-A Glacial Valley

M-M Active Glacial Channel
M-M Zone of Glacial Influence

Ice Extent
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A-A Glacial Valley
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(Harbor, 1992)




U Shaped, Hanging valley
glaciated

Waterfa

Steep valley
sides

Flat valley

Mis-fit stream




REVIEW

Erosion

A=kF, CU,
k -constant
F - contact force
C - concentration
U, — basal ice velocity (sliding)

Sliding
_ ] 7,
Ub =
q
(,09 h— PW) P, is the subglacial water pressure

where j and q are empically
determined constants



Trough Erosion

* Erosion = f (effective

pressure)
— “Effective”
N = f (water
pressure)

Ice Surface (Harbor, 1992)
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Trough Evolution




Paternoster
Lakes

e Local
overdeepenings

— Relative erodibility?

— |ce thickness
variation

e Some evidence of
cyclicity
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Flords

e Definition:

— Drowned
glacial troughs

e Appearance:

— Steep walls
rising from the
sea
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Thresholds and Strandflats
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Areal Scour (ice sheet)
 Depends heavily upon basal processes = f(T)
* Results in a suite of landforms
 May show superimposed patterns
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Areal Scour (ice sheet)

Ice sheet
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Breached
Divides

 New England
“notches”

— |lce advances
through notch

— Subglacial
drainage?
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