Erosional Forms and Landscapes

Many Forms

Red Tarn Cirque Basin, English Lake District British Geomorphological Research Group

Process

- Rotational Flow
- Headwall
 - Back movement
- Floor
 - Overdeepening
- ELA
 - Max. erosion

Cirque Form

- Exponential
- Process
 - Overdeepened
 - Max work @ ELA
 - Tarns

Cirque Orientation

- Any orientation is possible
 - Commonly to NE in Northern Hemisphere

Cirque Orientation

Why to NE in the North America?

- Insolation + sensible heat transfer?
- Effect of wind drifting?

Where is the closest cirque to Portland?

1 km

Portland LiDAR Consortium

Arêtes

 Jointing and mass wasting (two cirques)

Lake District, England

arete

Arête des Domes de Miage

Internet Geography, UK http://www.bennett.karoo.net/topics/glaciation.html#Hely

Mont Blanc Massif http://fabriceb.verof.free.fr/randos/Dom_Miag/deroule.htm

Arêtes and Horns

- Jointing and mass wasting (two cirques)
- Coalescence of three or more cirques

ELA

- Cirque vs. valley glacier
- Altitude

Washington Cascades – ridge and average elevations

Glacial buzz-saw: do average cirque elevations \rightarrow Cascade erosion?

Figure 5. Cross-range trends in average glacier (left) and circue outlet (right) altitudes shown on the three topographic subswaths. Linear least-square regressions of circue and glacier altitudes are shown as thick gray lines; slope and R^2 values are in Table 1.

Cirques \rightarrow the "glacial buzzsaw"

- Tectonic uplift, crustal strength vs. glaciation
- Hypothesis: hypsometric maxima correspond with snowlines and glaciers (~1500m above snow line)

The glacial buzzsaw how does it work?

The height of mountain ranges is limited by the sum of the snowline altitude and the amplitude of glacial refief above the snowline. While the snowline altitude depends on climate, the amplitude of glacial relief is, according to a global topographic analysis, generally less than 1500 m.

Roche Moutonee

A rock which has been shaped by ice flowing over it.

The side from which the ice came is smooth which the side in the direction in which the ice departed is steep and has been plucked by the ice.

This asymmetrical erosion indicates the direction of ice movement. It often has striations (scratches)

The 18th-century Alpine explorer Horace-Bénédict de Saussure coined the term 'roches moutonnées' in 1786. He saw in these rocks a resemblance to the wigs that were fashionable amongst French gentry in his era and which were smoothed over with mutton fat (hence 'moutonnée') so as to keep the hair in place. The French term is often incorrectly interpreted as meaning "sheep rock"Wikipedia

(Sugden, Glasser, & Clapperton, 1992)

Competing Hypothesis

A. Glacial Erosion

B. Preglacial weathering remnants

Topography of Roches Moutonnées depends on:

- horizontal and vertical joints
- lithology
- modified by:
 - glacial erosion
 - weathering

Support for the Weathering Hypothesis

Non-Glacial Areas

Forms that look like Roches Moutonnées are found in non-glaciated areas such as East Africa and Australia

Glacial Areas

Roches Moutonnées with little or no signs of glacial erosion

Troughs

"U" shaped

-X-section area = f(Q)

Trough Erosion

Trough Erosion

Trough Evolution

- Real form
- Overdeepen at confluences

Trough Evolution

 Real form
 Modeled form (Harbor, 1992, GSAB)

Cornell Geology

REVIEW

Erosion $\dot{A} = k F_n C U_b$ k - constant F - contact force C - concentration $U_b - basal ice velocity (sliding)$

Sliding

$$u_b = \frac{j\tau_b}{\left(\rho gh - P_w\right)^q}$$

 P_w is the subglacial water pressure where j and q are empically determined constants

Trough Evolution

Paternoster Lakes

Local overdeepenings
Relative erodibility?
Ice thickness variation
Some evidence of cyclicity

Fiords

 Definition:

 Drowned glacial troughs

 Appearance:

Steep walls
 rising from the
 sea

Trough Lake = Fiord?

Two Medicine LkFiordland (NZ)

Thresholds and Strandflats

Adventure Travel Sam Ford Fiord

J Kobalenko / ArcticPhoto

Areal Scour (ice sheet)

- Depends heavily upon basal processes = f(T)
- Results in a suite of landforms
- May show superimposed patterns

Areal Scour (ice sheet)

Breached Divides

- New England "notches"
 - Ice advances through notch
 - Subglacial drainage?

