Energy Balance

Calving Wind Erosion

Sublimation Melt

Surface Energy Balance

Longwave

- **1. Sensible Heat**
- 2. Latent Heat

FLUXES: ATMOSPHERE - GLACIER

$$0 = S \downarrow (1 - \alpha) + L \downarrow - L \uparrow + Q_H + Q_L + Q_m$$

- $S\downarrow$ short-wave incoming radiation flux
- a albedo of the surface
- $L\downarrow$ long-wave incoming radiation flux
- L[↑] long-wave outgoing radiation flux
- Q_H sensible heat flux
- Q_L latent heat flux
- Q_m phase change

Short Wave Radiation

- $S\downarrow(1-\alpha)$ net shortwave radiation
 - $S\downarrow$ short-wave incoming radiation flux
 - α albedo of the surface

Antarctic Snow

 $\alpha \sim 0.8$

Midtalsbreen 2009

Long Wave Radiation

- $L\downarrow$ long-wave incoming radiation flux
- L[↑] long-wave outgoing radiation flux

SHORT- AND LONG-WAVE RADIATION

TURBULENT FLUXES

 $Q_H + Q_L$

Vertical transport of properties of the air by eddies Turbulence is generated by wind shear (du/dz) Turbulent fluxes increase with wind speed

Heat:sensible heat flux, Q_H Water vapor:latent heat flux, Q_L

SENSIBLE HEAT FLUX calculated with the "bulk method" (Q_H)

$$Q_{\rm H} = \rho_{\rm a} C_{\rm pa} \frac{\left|\kappa^2 u \left(T - T_{\rm s}\right)\right|}{\left(\ln\frac{z}{z_0} + \frac{\alpha_{\rm m}z}{L_{\rm ob}}\right) \left(\ln\frac{z}{z_{\rm T}} + \frac{\alpha_{\rm h}z}{L_{\rm ob}}\right)}$$

0	air density
ra C _{na}	specific heat capacity of air
k pa	von Karman constant
u	wind speed
Т	air temperature at height z
T _s	surface temperature
z_0	momentum roughness length
z_{T}	roughness length for temperature
$\alpha_{\rm m}, \alpha_{\rm h}$	constants
L _{ob}	Monin-Obukhov length (depends on u and $T-T_s$)

LATENT HEAT FLUX calculated with the "bulk method" (Q_L) $Q_{L} = \rho_{a} L_{s} \frac{\kappa^{2} u (q - q_{s})}{\left(\ln \frac{z}{z_{0}} + \frac{\alpha_{m}z}{L_{ob}}\right) \left(\ln \frac{z}{z_{q}} + \frac{\alpha_{h}z}{L_{ob}}\right)}$

- ρ_a air density
- L_s latent heat of sublimation
- k von Karman constant
- u wind speed
- q specific humidity at height z
- q_s surface specific humidity
- z₀ roughness length for velocity
- z_q roughness length for water vapor
- α_{m}, α_{h} constants
- L_{ob} Monin-Obukhov length (depends on u and $T-T_s$)

measure short-wave radiation with a pyranometer (glass dome)

measure long-wave radiation with a pyrgeometer (silicon dome)

INSTRUMENTS

measure sensible heat flux with a sonic anemometer

ZERO-DEGREE ASSUMPTION

Assumption: surface temperature = $0^{\circ}C$

<u>Leads to</u>: $Q_0 > 0$: Q_0 is consumed in melting $Q_0 \le 0$: nothing occurs

Assumption okay when melting conditions are frequent

Not okay when positive Q_0 causes heating of the snow (spring, early morning, higher elevation)

Diurnal Variation

Greuell, 2003

- S = sensible heat
- L = latent heat
- G = ground heat flux
- M = melt

POSTIVE FLUX IS TOWARDS THE SURFACE

Average Daily Energy Balance Terms 50 0 Wm⁻² Taylor Glacier, Antarctica: Summer 1994-1997 -50 -100 50 0 Wm⁻² -50 Taylor Glacier, Antarctica: 'Winter' 1994-1997 -100 50 0 Wm⁻² Storglaciaren, Sweden: Summer 1994 (Hock and Holmgren, 1996) -50 -100 R S L G Μ

ENERGY BALANCE AT 5 ELEVATIONS

Pasterzegletscher

Effect of Solar Radiation

Effect of Solar Radiation

Effect of Solar Radiation, Turbulent Exchange

Dec-Jan 1996-1997

Ablation27.4 cmSublimation1.8 cmMelt25.7 cm

Ablation5.2 cmSublimation3.5 cmMelt1.7 cm

Cliff area accounts for 2% of the ablation zone.

But cliff melt accounts for 15-20% of the runoff

Lewis et al. (1999)

Effect of Solar Radiation, Turbulent Exchange

Penitentes are the name of the caps of the nazarenos; literally those doing penance for their sins. *Photo: Sanbec Wikipedia*

Neve Penitentes Upper Rio Blanco, Argentina

Photo: Arvaki Wikipedia

Mount Rainier 0.5 m tall.

Photo: Mark Sanderson Wikipedia

Notice the tilt angle

person

DEGREE-DAY METHOD

$$\begin{split} \mathbf{M} &= \beta \ \mathbf{T_{pdd}} & \text{M: melt} \\ \beta &: & \text{degree-day factor [mm day^{-1} \text{ K}^{-1}]} \\ T_{pdd} &: & \text{sum of positive daily mean temperatures} \end{split}$$

Why does it work:

- net long-wave radiative flux, and sensible and latent heat flux ~ proportional to T
- feedback between mass balance and albedo

Advantages:

- computationally cheap
- input: only temperature needed

Disadvantages:

- more tuning to local conditions needed: e.g. b depends on mean solar zenith angle
- only sensitivity to temperature can be calculated

REGRESSION MODELS

$$M_n = c_0 + c_1 T_s + c_2 P_w$$

- M_n: mean specific mass balance
- c_i: coefficients determined by regression analysis
- T_s : Annual mean summer temperature
- P_w: Winter Precipitation

