Glacier Hydrology

Why should you care?







PRACTICAL MATTERS:
GLACIERS IN THE HYDROLOGICAL SYSTEM

1. Glacier-fed rivers provide much of the
water supply in some parts of the world.
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PRACTICAL MATTERS:
GLACIERS IN THE HYDROLOGICAL SYSTEM

2a. Run-off characteristics (daily and

seasonal) differ from other types of stream
flow.
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PRACTICAL MATTERS:

GLACIERS IN THE HYDROLOGICAL SYSTEM

2b. Contribution
to regional runoff

Klawatti Glacier Thunder Creek Basin
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PRACTICAL MATTERS:
GLACIERS IN THE HYDROLOGICAL SYSTEM

3. Run-off locally used for hydroelectric
power generation.
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PRACTICAL MATTERS:
GLACIERS IN THE HYDROLOGICAL SYSTEM

4. Flood hazards in alpine areas from
moraine-dammed and ice-dammed lakes.

Hidden Lake, Kennicott Glacier Austin Post Thayer Glacier, North Sister, Oregon John Scurlock



PrRACTICAL MATTERS:
GLACIERS IN THE HYDROLOGICAL SYSTEM

4. Flood hazards in alpine areas from
moraine-dammed and ice-dammed lakes.
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What can we learn from observation?




In the accumulation zone




Ablation Zone




Ablation Zone




In front of the glacier

John Scurlock

Annes Hjemmeside




Subglacial Conduit







Hydrologic Cross Section of a Temperate Glacier
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Firn water table
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Englacial Passageways

Plan View
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Englacial Passageways




How do we learn about water
flow through glaciers?

 Field studies of active glaciers
» Theoretical analysis
* Inferences from geomorphology



Field study of active glaciers

Mass balance

Stream monitoring (incl. hydrochemistry)
Dye tracing

Borehole-based studies

Radio-echo sounding



Mass Balance

Meltwater

HYDROLOGICAL PROCESSES
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Stream Monitoring - including hydrochemistry
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Character of the dye 16 -

return curve commonly b /
changes as the melt season 44 |
progresses. .
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Boreholes




THEORETICAL BOREHOLE SITUATIONS
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Fracture and Borehole




Water Level Variations
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Theoretical framework for glacier
hydrology

 Field observations provide some constraints

* Thermodynamics, mechanics of materials
provide additional constraints



Cross section through glacier
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Channel enclosed by
iIce (R channels)

Channels in ice are self-formed
and reflect a balance between
melting of the walls (by energy
dissipated in the flowing water)
and creep of ice into the channel.




Channel enclosed by
Ice (R channels)

Rate of change of channel cross-sectional
area reflects difference between melting
and creep closure.

« Water flow is impeded by friction.

« Energy dissipated by friction goes into
melting.

« Water temperature stays at the pressure —
melting point.
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Steady state R channel

dpw_ € (i —pw)** ™

dx 02/11
Qs
Egemﬁed < 00 flow
Q<Q,

In steady state, flow should become concentrated
Into large channels, which are at lower pressure.



Arborescent

R- channels




Insight from geomorphology

Features exposed
on recently
deglaciated
carbonate bedrock
provide insights
Into geometry

of subglacial
drainage network.




GLACIER DE FERPECLE, VALAIS, SWITZERLAND Robert Bingham
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Cavity network

A cavity network has very
different hydraulic
properties than an
arborescent channel
network.
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Cavity hydraulics

WITHOUT ROOF MELTING

.- osliding velocity v —e

Cavity formation is th
controlled by,
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Cavity-network hydraulics

dpw _ . Q° (i — Pw)
dx 13

In steady state, flow should become concentrated
Into larger cavities, which are at higher pressure.
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Creep closure

b Sliding >

. Creep closure
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Role of till at the bed

Suppose bed 1s primarily sediment (till)....
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Till canal—physics

Ice and sediment
tend to flow In to
fill channel. Water
flow enlarges
conduit by melting
and also transports
sediment.




Seasonal
Drainage system evolution

 Basal drainage system tend to collapse
during winter

 Early In melt season—cavity dominate

 Rapid increase in water flux to bed
destabilizes linked cavity network and
promotes R channel formation



Summary of Glacier Hydrology
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Water and glacier sliding

Dependence of
speed on water
pressure has
changed

over time at a single
glacier.
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Hydrology of ice sheets

Most of the Interior of large ice sheets
frozen to the bed.

At least locally temperate ice near margins.

Basal water plays important role in rapid
movement of ice streams.

Glacial geology as a way to infer conditions
beneath ice sheets?



Antarctica
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