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with melting of ground ice. To evaluate the extent, magnitude, and location of decadal-scale landscape change in
the MDV, we collected airborne lidar elevation data in 2014-2015 and compared these data to a 2001-2002 air-
borne lidar campaign. This regional assessment of elevation change spans the recent acceleration of warming and
melting observed by long-term meteorological and ecosystem response experiments, allowing us to assess the
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Antarctic response of MDV surfaces to warming and potential thawing feedbacks. We find that locations of thermokarst
Permafrost subsidence are strongly associated with the presence of excess ground ice and with proximity to surface or shal-
Glaciers low subsurface (active layer) water. Subsidence occurs across soil types and landforms, in low-lying, low-slope

Lidar areas with impeded drainage and also high on steep valley walls. Glacier thinning is widespread and is associated
with the growth of fine-scale roughness. Pond levels are rising in most closed-basin lakes in the MDV, across all
microclimate zones. These observations highlight the continued importance of insolation-driven melting in the
MDV. The regional melt pattern is consistent with an overall transition of water storage from the local cryosphere
(glaciers, permafrost) to the hydrosphere (closed basin lakes and ponds as well as the Ross Sea). We interpret this
regional melting pattern to reflect a transition to Arctic and alpine-style, hydrologically mediated permafrost and
glacial melt.

© 2018 Published by Elsevier B.V.

1. Introduction mobilization feedbacks are thought to be disintegrating the terminal re-

gions of several Antarctic glaciers (Fountain et al., 2014).

Changes to Earth's terrestrial cryosphere (glaciers, snow, perma-
frost, and ground ice) can rapidly reorganize landscapes, leading to
changes in energy balance, runoff, and ecosystem functioning. These
perturbations to topography drive further changes in glacial and ground
ice stability, generating positive feedbacks in frozen landscapes. For ex-
ample, lidar and topographic studies of glacier surfaces in Arctic and al-
pine regions have shown that ablation can drive sediment mobilization
and enhance melting (Irvine-Fynn et al., 2011), roughening of
supraglacial channels can lead to enhanced melting (Rippin et al.,
2015), and steepening of exposed glacier surfaces can enhance ablation
and melt at low sun angles (Molg, 2004). Hydrological and sediment
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Such positive melting feedbacks are also associated with permafrost
degradation, where changes in drainage, the geometry of thermokarst
ponds, channel stability, and active layer thermal properties can rapidly
alter the distribution of soils, ice, and carbon (Jorgenson et al., 2006;
Gooseff et al., 2011; Arp et al., 2015; Kanevskiy et al., 2016; Levy and
Schmidt, 2016; Strauss et al., 2016). Hydrologically mediated melting
of ground ice has led to thermokarst subsidence over broad study
areas containing continuous permafrost. For example, ~35% of tussock
tundra sites in the Eight Mile Lake, a research watershed in Alaska,
have experienced water-mediated subsurface thaw and subsidence
(Belshe et al., 2013) similar to widespread thawing impacts at perma-
frost research sites in Siberia (Czudek and Demek, 1970).

In the Arctic, mechanisms driving permafrost degradation are well-
understood and include i) surface warming caused by warmer air


http://crossmark.crossref.org/dialog/?doi=10.1016/j.geomorph.2018.09.012&domain=pdf
https://doi.org/10.1016/j.geomorph.2018.09.012
jlevy@colgate.edu
Journal logo
https://doi.org/10.1016/j.geomorph.2018.09.012
http://www.sciencedirect.com/science/journal/
www.elsevier.com/locate/geomorph

J.S. Levy et al. / Geomorphology 323 (2018) 80-97

temperatures, ii) reduction in albedo and ponding of surface waters,
which is most pronounced in glacial drifts and eolian soils (Farquharson
et al., 2016), and iii) land cover disturbance (e.g., Shur and Jorgenson,
2007). The magnitude and pattern of thermokarst subsidence is strongly
controlled by where ground ice is abundant and subject to
melt (cryolithology) (French and Shur, 2010). In addition, enhanced
thermokarst erosion occurs in lower-slope watersheds where ponding
occurs, implying surface slope may play a controlling role in subsidence
(Farquharson et al., 2016). Finally, landscape age plays a key role in the
distribution of Arctic thermokarst-enhanced thermokarst reworking is
most prevalent on older landscapes (Jorgenson and Shur, 2007).
Surface- and groundwater mediated permafrost thaw are hypothesized
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to now be occurring in the ice-free polar deserts of Antarctica (Schmidt
and Levy, 2017).

In contrast to rapidly changing Arctic and alpine cryosphere land-
scapes, Antarctica's largest ice-sheet-free region, the McMurdo Dry Val-
leys (MDV) (Fig. 1), has been mostly shielded from abrupt change due
continually cool, and in cases cooling, air temperatures during the
1990s to early 2000s (Doran et al., 2002a; Shindell and Schmidt,
2004). Counterintuitively, during this period, solar radiation had been
increasing significantly (Fountain et al., 2014; Obryk et al., 2018). A no-
table summer thaw in 2001-2002 coincided with a pivot in the cooling/
brightening climate trajectory; since 2002, summer air temperatures
and elevated solar flux (Fig. 2) have remained largely constant, leading
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Fig. 1. Context map and hillshade of the lidar data set over Landsat Image Mosaic of Antarctica (LIMA) data. Features of interest for the erosion/volume-change analyses are highlighted in
black. Note, feature area has been exaggerated one pixel to enhance visibility. Feature area and GIS shapefiles are available as supplementary files. Dot marked F5 indicates the location of
Fig. 6. Dot marked F4 indicates the location of soil roughness analyses shown in Fig. 5. LB indicates Lake Bonney. SG indicates Seuss Glacier.
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Fig. 2. (Upper two panels) Mean annual average air temperature and mean annual average insolation at the Lake Hoare meteorological station in Taylor Valley. Data courtesy MCM-LTER
(mcm-lter.org). NASA (2001) and NCLAM (2014) lidar surveys are marked with shaded bars. (Lower panel) Mean summer (DJF) air temperature and mean summer insolation at the Lake
Hoare meteorological station in Taylor Valley. Data courtesy MCM-LTER (mcm-Iter.org). Notable known data gaps include 10 days in 1985, half of December 1993, and half of February

2011. Ten days of temperature data are also missing from the 2017 temperature record.

to lake ice thinning (Obryk et al., 2016a), lake level rise, and enhanced
glacier runoff (Gooseff et al,, 2017). These physical changes have precip-
itated biotic and hydrological ecosystem responses to regional warming
and thawing (Fountain et al,, 2016a, 2016b; Obryk et al., 2016b; Gooseff
etal, 2017).

Fountain et al. (2014) identified three major classes of landscape
change in the MDV that are inferred to result from this recent pulse of
warming: i) disintegration and thinning of glacier surfaces, ii) formation
and expansion of thermokarst slumps and ponds, and iii) the generation
of stream-channel thermokarst through bank undercutting. The com-
monality between all these landscape changes is the interaction be-
tween sediment and ice acting as a catalyst for melting. Fountain et al.
(2014) hypothesized that changes in energy budget and melting of ice
altered surface topography, which led to subsequent changes to down-
stream hydrology and biogeochemistry. More specifically, they sug-
gested that i) enhanced solar radiation was warming low albedo
sediment, despite then-present atmospheric cooling, leading to melting
of subsurface ice and dirty glacial ice; and ii) glacial meltwater flowing

over the dark soils increased subsurface heat content leading to rapid
thermal erosion of ice-cemented permafrost and massive subsurface
ice. Fountain et al. (2014) argued that the landscape response to this
insolation-driven warming of sediment mimics the expected soil
warming caused by regional climate warming in the coming decades
(Arblaster and Meehl, 2006; Chapman and Walsh, 2007).

Plot-scale field observations suggest that in specific locations the
MDYV are in the midst of rapid landscape change (Levy et al., 2013a;
Dickson et al., 2015; Gooseff et al., 2016; Sudman et al., 2017). The
Wright Lower Glacier (Wright Valley) has deflated several tens of me-
ters, the Garwood River (Garwood Valley) has incised >3 m into massive
ice permafrost, and on Canada Glacier (Taylor Valley) >4 m canyons have
formed (Fountain et al., 2014). Beginning in 2011-2012, thermokarst
slumps appeared around streams and lakes in Taylor Valley for the first
time since continuous observations of Taylor Valley began in 1993
(Fountain et al., 2014).

Here, we report on first results from an airborne lidar campaign con-
ducted over the MDV in 2014-2015 (Fountain et al., 2017), which
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collected ground, glacier, and lake surface elevation data in order to
evaluate the extent, magnitude, and location of landscape change in
the MDV relative to a 2001-2002 airborne lidar campaign (Schenk
et al,, 2004; Csatho et al., 2005). This regional assessment of elevation
change captures the decadal response of the landscape to summertime
melting conditions since 2001-2002, which spans the recent increase
and leveling off of solar radiation and glacier melt and runoff observed
by long-term meteorological records and ecosystem response experi-
ments (Gooseff et al., 2017). These observations allow us to provide
an overview of the regional response of MDV surfaces to warming and
potential thawing feedbacks through geomorphic analysis supported
by field investigations involving sediment sampling and ground-
penetrating radar imaging of the subsurface. In contrast to ground-
based field studies, our airborne lidar intercomparison is the first time
we can document the three-dimensional evolution of the MDV in
close to its entirety.

2. Regional setting

The MDV (~77°S, ~162°E) are composed of a series of largely east-
west trending valleys that separate the East Antarctic Ice Sheet from
the Ross Sea (Fig. 1). The MDV encompass a region ~22,700 km? in
area, of which ~4500 km? is permafrost-affected soils and bedrock free
of surface ice (Levy, 2012). The remainder of the area is covered by
perennial snow packs, outlet glaciers, alpine glaciers, and perennially
ice-covered lakes. A lack of vascular plants or continuous hydrological
activity (e.g., rainfall, streamflow) means that the distribution of micro-
climates in the MDV exerts an unusually strong control on the landform
evolution (Marchant and Head III, 2007). Cold temperatures and lack of
an energized hydrological cycle result in a largely stable landscape, with
stability increasing with elevation and distance inland. Indeed, the larg-
est advance of the local alpine glaciers was only a few hundred meters at
most and occurred 70-130 thousand years ago (Higgins et al., 2000b).
At high elevations surrounding the valleys, ~2000 m, bedrock erosion
rates can be as low as <0.3 m Ma~' (Brook et al., 1995; Marchant and
Head 111, 2007).

With a mean annual air temperature range between —14.8° and
30.0 °C, and between 3 and 50 mm of annual precipitation (all of
which falls as snow) (Doran et al., 2002a; Fountain et al., 1999, 2009),
the MDV are a cold, polar desert (Monaghan et al., 2005). Despite
these harsh climate conditions, an active, microbially dominated biolog-
ical community inhabits the valleys, consisting of microbes and inverte-
brates (nematodes, tardigrades, rotifers, etc.) in the soils, cyanobacteria
and mosses in the streams, and phytoplankton in the lakes, which has
helped motivate long-term studies of this melt-limited landscape
(Priscu et al.,, 1998; Adams et al., 2006; Cary et al.,, 2010).

Valley soils preserve the legacy of the interactions of seaward
flowing outlet glaciers and/or landward encroachment of grounded
Ross Sea Ice Sheet (RSIS). Together they form a complexly interfingered
assortment of glacial tills and fluviolacustrine deposits (Stuiver et al.,
1981; Denton et al., 1993; Hall and Denton, 2000; Hall et al., 2000;
Higgins et al., 2000a, 2000b; Marchant et al., 2002; Ugolini and
Bockheim, 2008). Below ~300 m elevation, the MDV are dominated by
sediments and buried ice associated with infilling of the valleys by
RSIS material, mapped as Ross Sea Drift, during the last glacial maxi-
mum (Stuiver et al., 1981; Hall et al., 2000, 2015). In regions above
~300 m, old surfaces (~1-8 MY) dominate and include the Quartermain
Mountains, and the Asgard, and Olympus ranges (e.g., Marchant et al.,
19934, 1993b; Sugden et al., 1995).

The MDV soils are characterized by continuous permafrost with sea-
sonal active layers forming on nearly all surfaces. Active layer thick-
nesses span 0-70 cm, with ~20-30 cm being most common in coastal
valley bottoms in Taylor Valley, Wright Valley, and Garwood Valley
(Bockheim et al., 2007). Active layers ~0-5 cm thick dominate the
cold, upland, inland regions such as Beacon Valley (Marchant and
Head I1I, 2007; Fountain et al., 2014). Active layers form over dry and

ice-cemented permafrost, buried ground ice, debris-covered glaciers,
and ice-cored moraines (Bockheim et al., 2007).

Permafrost is predominantly ice-cemented and ranges from ice-
saturated to weakly cemented, although ‘dry-frozen,’ ice-free, perma-
frost is common in the upper ~1 m along high valley walls above ice-
cemented permafrost (Bockheim et al., 2007). Massive buried ice
(ground ice) is common and has been mapped in alpine sections of
the MDV, in the Quartermain Mountains, in Victoria Valley, and in ex-
tensive ice-cored Ross Sea Drift deposits (Stuiver et al., 1981; Sugden
et al., 1995; Hagedorn et al., 2010; Swanger, 2017). All three types of
permafrost (dry, ice-cemented, and buried massive ice) are potentially
susceptible to warming-related degradation—either directly through
slumping of melt-lubricated sediments and surface ablation by melt or
sublimation-driven ice removal, or indirectly, as ice-free permafrost
and active layer sediments are preferentially removed by warming-
induced fluvial erosion.

The thermal stability of permafrost, buried glacier ice, and other
ground ice is controlled largely by regional microclimate conditions
(Marchant and Head III, 2007; Hagedorn et al., 2010). Inland and high-
elevation areas in the upland stable zone have summer air temperatures
<—10 °C and minimal to absent active layer (Fountain et al., 2014;
Marchant and Head III, 2007). As a consequence, ablation of ground
ice in this zone is thought to be dominated by slow sublimation and
vapor diffusion through dry overlying tills (Ng et al., 2005; Hagedorn
et al,, 2007; Kowalewski et al., 2006, 2011a, 2011b; Lacelle et al., 2013;
Marinova et al.,, 2013;). In contrast, coastal and low-elevation regions,
Marchant and Head III's (2007) coastal thaw zone, experience mean
summer air temperatures warmer than —5 °C (Fountain et al., 2014),
leading to widespread active layer thawing and refreezing of ground
ice (Levy et al,, 2011), as well as secular change in ground ice reservoirs
as buried ice and frozen sediment melt (Healy, 1975; Campbell and
Claridge, 2003; Levy et al., 2013a; Sudman et al., 2017).

3. Methods
3.1. Lidar processing

To detect landscape change in the MDV, we examined surface eleva-
tion change across the valleys by differencing an aerial lidar survey flown
in the austral summer of 2001-2002 (Schenk et al., 2004; Csatho et al.,
2005; Martin et al., 2005) from one flown in 2014-2015 (Fountain
et al,, 2017). The 2001-2002 survey used NASA's Airborne Topographic
Mapper system that produced a point density in the valley bottom of
at least 0.14-0.32 returns m—2 (Schenk et al., 2004; Csatho et al.,
2005). The 2014-2015 survey used the Optech Titan multiwavelength
airborne laser scanner (Fernandez-Diaz et al., 2016) that produced a
point density of at least 2 returns m~2. The footprint (diameter) of the
laser beam was ~0.3 m for channels 1 and 2 (1550 and 1064 nm) and
~0.6 m for channel 3 (532 nm). An Optech Gemini airborne laser terrain
mapper (ALTM) served as a backup to the Titan multiwavelength scan-
ner, which uses a 1064 nm laser pulse at 33 to 166 kHz and a beam diver-
gence of 0.25 mrad. Differential kinematic trajectories for the 2014-2015
survey were derived from a total of nine UNAVCO Global Positioning Sys-
tem (GPS) stations recording data at a rate of 1 Hz. The aircraft was no
>40 km from any station during mapping operations.

To compare the 2001 and 2014 point clouds, the original point clouds
were reprocessed using identical methods, and then irregularly spaced
data in the sparser 2001 data-set were interpolated using a Delaunay tri-
angulation. Lidar data from the 2014-2015 survey were processed in
three main steps: trajectory determination, point cloud production, and
point cloud processing. Differential trajectories for the aircraft were de-
rived by blending solutions from at least three GPS stations using the
KARS (Kinematic and Rapid Static) software (Mader, 1996), which were
then combined with orientation information collected from the onboard
inertial measurement unit. Point cloud production combined laser range
data with position data to produce geolocated point clouds of laser
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returns using the sensor manufacturer's proprietary software LMS for the
Titan MW and DASHmap for the Gemini. Each data return was positioned
in three-dimensional space by horizontal coordinates in U.S. Geological
Survey Transantarctic Mountains Projection (epsg projection 3294) and
vertical coordinate in meters above the World Geodetic Survey 1984
(WGS84) ellipsoid.

The 2001 interpolated mesh was subtracted from the 2014 point
cloud at the resolution of the 2014 point cloud. The results were output
at a gridded difference DEM with a minimum spatial resolution of 1
x 1 m. Close inspection of the differenced values revealed some artifacts
associated with the NASA data caused by a mounting bias that caused
range errors to increase with increasing terrain slope (Martin et al.,
2005). This bias of about +-20 cm root mean square error (RMSE) and
the accuracy of the 2014-2015 data of about +7 cm RMSE together
yield an uncertainty of +21 cm, close to our empirically derived estimate
of 425 cm. The latter was based on elimination of spurious noise in the
differenced data. We applied the +25 cm threshold to filter the
differenced data before examining elevation changes. Therefore, all land-
scape changes reported are larger than 4-25 cm. Horizontal registration
uncertainties are lower. We used an iterative closest point (ICP) compar-
ison of 500 m by 500 m blocks from Taylor Valley in areas where hori-
zontal movement was not expected (bedrock, valley bottoms without
streams, etc.) in order to assess mismatch between point clouds. More
than 50,000 points were compared, producing an average easting shift
of 0.011 m (standard deviation = 1.63 m) and an average northing
shift of —0.009 m (standard deviation = 1.76 m). Based on the lack of
a mean bias, we concluded that the data was properly horizontally
registered.

Seasonal snow patches are common in MDV, and differences in patch
thicknesses between lidar surveys would produce spurious elevation dif-
ferences. During the 2001-2002 survey few snow patches populated the
valleys as a consequence of the extremely warm air temperatures expe-
rienced that summer (Doran et al., 2008; Barrett et al., 2008). In contrast
the 2014-2015 data-collection season was relatively cold and snow
patches were common. To eliminate the effect of snow patch change
from the differenced elevations, panchromatic Landsat 8 (Morfitt et al.,
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2015) imagery at 15 m spatial resolution was used to identify snow
patches. The imagery (LC80561162014353LGNOO, 19 December 2014)
was collected during the time of the 2014-2015 lidar surveys. Snow-
or ice-covered pixels were identified by their reflective brightness ex-
ceeding a threshold of >20% (Levy, 2012) and were removed from the
difference elevation raster. Snow patches in the MDV tend to accumulate
and persist in the same locations because of relatively consistent patterns
of wind deposition and erosion of snow (Eveland et al., 2013). Elimina-
tion of the patches known to exist in 2014-2015 would also eliminate re-
sidual patches that may have survived in 2001-2002. Snow patches were
not eliminated from either lake ice or glacier surfaces for which it can be
difficult to algorithmically discern snow from underlying ice.

3.2. Change mapping

Landforms of interest were outlined using the 2014 DEM hillshade
(Fig. 1) and were selected to explore elevation change within glacial,
fluvial, lacustrine, and permafrost deposits. Landform type and location
were used as mapping criteria—not elevation change (i.e., sites were not
preselected for analysis based on elevation change between 2001 and
2014). Fluviolacustrine features (e.g., streams, lakes, ponds) were
mapped to include a portion of the banks adjacent to the feature that
may have changed. Buried ice landforms (e.g., the Garwood buried ice
lobe; Stuiver et al., 1981) were mapped as close to the apparent land-
form boundary as possible. For pond and lake level change calculations,
the entire perimeter was mapped based on smoothing visible in the
lidar hillshade at the contact between the lake and the surrounding
soil, and a transect of elevation across the long axis of the lake was ex-
tracted and averaged. For glacier thinning measurements, the upper el-
evations of the glaciers were not included due to the limited extent of
the aerial surveys, restricting the differenced regions to the ablation
zones. The location and extent of all selected features are included in
the Supplementary data as ESRI ArcMap shapefiles.

Nearest-neighbor point differencing between the areas of interest
within the 2001 and 2014 lidar point clouds was converted into a site-
specific difference raster by assigning each cell the maximum triangulated
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Fig. 3. Gross volume loss for the 28 features of interest. Ice loss is concentrated in the RSD (Alph, Garwood, Miers, Ward, Hjorth Marshall).
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difference value within each 1 x 1 m grid cell. Note, the difference be-
tween taking the minimum point in each cell and the mean point in
each cell is small, generally <5% as there was commonly only one differ-
ence point pair in any 1 x 1 m grid cell. Maximum, rather than mean sub-
sidence was selected for this analysis because it ensures that large
subsidence cells (e.g., >10 m subsidence, common in some extreme
thermokarst sites) are not truncated by the matching algorithm. This ap-
proach also records aggradation, which, although not widespread in the
MDYV, is the dominant landscape change at some sites. Elevation differ-
ences within each feature outline were used to generate a measure of
gross volume change with each landform footprint. Raster cells were
summed by landform to determine net volume change within each land-
form footprint, and area-normalized net elevation change was deter-
mined by dividing net volume change by feature area. Surface elevation
change rate was determined by dividing area-normalized net elevation
change by the 13-year time interval between lidar surveys.

To estimate changes in area and volume for the glaciers and lakes, a
polygon defining the perimeter of each landform was drawn at the
break in slope between the landform and the surrounding soil apparent
in the 2014 lidar hillshade. The point clouds for the 2001 NASA data and
2014 NCALM data were each converted to a surface of triangular cells
(TIN) within their respective perimeters. Once the two surface models
were created, the area of each was calculated. The volume change is the
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volume between the two surfaces and a prismoidal calculation between
cells was used to calculate the volume (TerraModel by Terrasolid Oy).

Surface roughness was estimated on glacier, lake ice, and soil sur-
faces for each of the lidar surveys by calculating the elevation difference
between individual points within a circle 5 m in radius and the best fit
plane to those points. The RMSEs from all nonoverlapping circles
contained within the landscape feature were binned according to the
magnitude and the relative number within each bin. These were com-
pared to the total population within that particular landscape feature
and plotted as a function of the roughness magnitude. We examined
the change in surface roughness for five glaciers, four lakes, and two
soil surfaces in Taylor Valley and one soil surface in each of the
McKelvey and Victoria valleys. Because of the mounting bias of the
NASA lidar, we restricted the assessment of roughness change to rough-
nesses larger than the 25 cm threshold, which was also applied to eleva-
tion differencing.

3.3. Subsurface characterization

To assess the presence or absence of massive buried ice, ground pen-
etrating radar (GPR) surveys were implemented in 2014-2015 on sur-
faces from sea level to ~1 km elevation. The surveys were collected on
foot using a Mald ProEx impulse system with 200 MHz unshielded

Distance (m)

Fig. 4. Ice-cored moraine investigated with GPR. (A) Landsat 8 view of the Hobbs glacier ice-cored moraine. GPR path is marked with white line with endcaps. (B) Radargram showing a
traverse across the moraine. An internal zone with minimal reflectors is interpreted as an ice core. (C) Oblique air photo showing the location of the moraine in front of the Hobbs glacier.
The moraine area is highlighted with enhanced contrast. (D) Zoomed in view of part (C) showing the approximate traverse of the GPR line.
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antennas. The surveys used a common-offset antenna configuration
along transects with the antennas carried on a frame with minimal dis-
tance to the ground to maintain coupling with the ground. Individual
GPR traces were recorded at a rate of four traces per second with each
trace stacked eight times to improve the signal-to-noise ratio (Jol,
2009). Trace positions were located using a dual-frequency GPS receiver
connected to the GPR and later processed using Precise-Point-Position
processing (Nylen and White, 2007). Horizontal and vertical position
accuracy is estimated to +5 and 410 cm respectively. A walking
speed of ~2 km h™! yields an average trace spacing of ~0.2 m along
the survey path. The vertical resolution is estimated to be ~0.15 m for
the 200 MHz profiles based on the center frequency and sampling fre-
quency of the radar. Survey locations were selected to test predictions
(Fountain et al., 2014) on the presence or absence of ground ice
(Fig. 3). The locations were based on terrain features such as moraines
(possibly ice-cored—e.g., Fig. 4) and flat valley floors indicating the ab-
sence of thermokarst. The locations were also chosen to cover large el-
evation ranges and different slopes and slope orientations.

The post-processing of the GPR data was kept to a minimum; a
Butterworth bandpass filter with cut off frequencies at 30 and 300 MHz
were used to remove noise. A background removal filter was applied to
remove antenna ringing effects. Conversion of two-way travel-time of
the radar wave-to-depth was done using velocities estimated from hyper-
bolic fitting of presumed point reflectors (Jol, 2009). The presence of mas-
sive ground ice is indicated by few internal reflectors (compared to the
noisy surrounding rocky strata) and a distinct reflection at the base of
the inferred ice (Fig. 4). The reflection is interpreted as the interface be-
tween the massive ground ice and the geological strata below.

4. Geomorphic results

Here we present observations of landscape change in the MDV based
on changes derived from differencing the TIN surfaces of each lidar sur-
vey and roughness calculations (Figs. 3, 5-6). Positioning irregularities
in the 2001 lidar point cloud, coupled with nonidentical spatial extents
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of the 2001 and 2014 point clouds resulted in an uncertainty in eleva-
tion differences of 425 cm, as described previously. Most differences
across the valleys were smaller than this threshold precluding a data-
set-wide comparison of elevation change. Instead we focus on regions
where changes exceeded this threshold and report on 20 glaciers, 26
ice-covered pond and lake sites, 28 soil and stream sites, and migration
of 28 selected dunes.

4.1. Glaciers

The ablation zones of 20 glaciers in nine valleys were surveyed. These
included five glaciers in Taylor Valley, five in Wright Valley, five in the
Garwood, Marshall, and Miers valleys, two in McKelvey Valley, and one
in each of the Barwick, Beacon, and Victoria valleys (Table 1). Changes
to snow cover are thought to be small in these locations, as lidar points
are in the glacier ablation zones where snow cover is ephemeral and
patchy. Instead, glacier surface change is dominated by the translation
of the surficial ridge and swale topography (Telling et al., 2017). Glacier
ablation zones have largely thinned over the 14-year period with mean
elevation changes ranging from —2.1 m at Miers Glacier in Miers Valley
to —0.28 m at Victoria Lower glacier. All ablation zones have thinned,
most of which exceed uncertainty, except for four glaciers. For these latter
glaciers the uncertainty well exceeds thickening except for Taylor Glacier,
which equals its uncertainty (40.40 + 0.41 m). All glaciers examined are
relatively small alpine glaciers with the exception of Taylor, which is an
outlet glacier of the East Antarctic Ice Sheet. In addition to the changes
in elevation of the glaciers' ablation zones, glaciers also smoothed be-
tween 2001 and 2014 (Fig. 6).

4.2. Lakes and ponds

Ponds and lakes in the MDV are widespread (see Supplementary map
and table) across all microclimate zones and can be broadly divided into
closed and open basins based on whether they have an outlet channel.
Across the MDV, most closed-basin lake/ponds of all sizes (10?-~10” m?)
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have risen (Fig. 7). Notably, increased levels are present across all micro-
climate zones, from the coastal thaw zone to the upland stable zone. For
example, some closed-basin lakes (~10” m?) have risen by over 4 m
(Fig. 7). We interpret an increase in closed-basin lake/pond levels as evi-
dence of transfer of water reservoirs from cryosphere sources (glaciers,
ground ice, and snow) to the hydrosphere (lakes and ponds).

In contrast, changing levels in open-basin lakes are not uniform and
exhibit rising and falling trends (Fig. 7). Open-basin lake levels are tran-
sient as a consequence of drainage through either ice dams or topo-
graphic relief (e.g., Lake Miers, Buddha Lake) and have been observed
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to rise and rapidly drain when ice dams fail or the topographic spill
point is reached, leading to downstream flooding (Dickson et al.,
2015; Fountain et al., 2014; Levy et al.,, 2013a). Such lakes may appear
to rise or fall depending on when in their seasonal filling and draining
cycle they were surveyed, consequently open-basin lakes/ponds cannot
be considered good indicators of climate-related elevation change in
this study. Likewise, thermokarst ponds that are confined by glacier
ice or ice-cored glacial till (e.g., Alph Lake) may be lowering because
of melting of the underlying ice, even if the overlying water depth has
not changed.
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Bonney, and the valley floor of eastern Taylor Valley. Gray shading indicates roughness below the 4-25 cm uncertainty threshold for intercomparison between NASA and NCALM data sets.
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4.3. Stream and soil sites

We found substantial elevation changes at the 28 soil, stream, and
basin locations surveyed. Each site consists of ice-cemented or ice-cored
permafrost and active layer soil that has interacted with meltwater in dis-
tinct ways. The largest gross volume losses are at sites associated with ice-
cored Ross Sea Drift (RSD): the Alph Lake basin, the Garwood lobe, the
Garwood River, Miers River, Ward Stream, the Hjorth Hills area, and
Marshall Valley (Fig. 3). These sites each have experienced the loss of
10° to 10° m> of ice and soil between surveys. These sites are largely in
the coastal thaw zone at elevations typically below 300 m. Elevation
change at these sites is associated with the formation of thermokarst
ponds (Alph Lake, Garwood Lobe) or the deep incision by streams into
buried ice deposits (Ward Stream, Garwood River, Miers and Marshall
rivers, Commonwealth Stream) and the formation of thaw slumps or
scarps (e.g., the Garwood Valley ice cliff, Levy et al., 2013a).

Sites exhibit a wide range of gross volume loss between surveys
(Fig. 3). Alph Lake, a thermokarst pond basin with steep banks of ex-
posed ice overlain by dark, volcanic sediments (Fig. 8), has the largest
gross volume loss; while the smallest gross erosion site is Seuss Glacier
Gully, a small thermoerosional gully (e.g., Fortier et al., 2007) adjacent
to Seuss Glacier. Located at ~288 m elevation, the Seuss Glacier Gully
is not associated with valley-mouth RSD, but rather with ice from a
valley-wall debris-covered glacier or gelifluction lobe. Intriguingly,
when net volume change (loss minus aggradation) is normalized by
landform area and time between surveys (Fig. 5), the Alph Lake basin
remains the most actively melting and eroding landform; however,
the Seuss Glacier Gully is then found to have the second largest area-
normalized surface lowering rate (Fig. 5). This highlights the potential
for ice loss and subsidence in small and large features, as well as high-
and low-elevation ice deposits (e.g., Swanger and Marchant, 2007).

Erosion of stream channels in the southern MDV is greatest for those
flowing over ice-cored RSD, e.g., Ward, Marshall, Garwood (Figs. 3, 5,9),
and can reach tens of meters (Fig. 9). Where stream channels flow over
ice-cemented permafrost only, incision is generally low; where streams

Table 1

flow over surfaces with pockets of massive ground ice, as is common in
RSD, erosion can reach several meters in locations where excess ice is
still preserved.

Similar stream erosion patterns are observed in Taylor Valley. Surface
elevation change for stream channels and banks in central Taylor Valley
below 300 m elevation (Wormbherder Creek, Lake Bonney area, Crescent
and Delta streams, etc.) is generally small, except where patchy, massive
ground ice is present that is associated with locally large volume loss
(Fig. 10) (Sudman et al., 2017). In contrast, where widespread, largely in-
tact RSD buried ice is present (e.g., Commonwealth Stream), incision can
reach several meters over long reaches of the stream channel (Fig. 10).

In contrast, some study sites are actively aggrading (Fig. 5). Positive
volume changes (aggradation) occur primarily on alluvial fan surfaces,
such as Bull Pass area and Upper Victoria Valley stream, or in extremely
sediment-rich fluvial channels, such as the proglacial McKnight/Lost
Seal system that dissects a sand sheet at the toe of Commonwealth
Glacier. In these sites, sediments from upslope are inferred to be under-
going deposition in the study site.

4.4. Other landscape changes

In terms of roughness, MDV surfaces are generally smoother (lower
roughness) in 2014 than in 2001 (Fig. 6). Roughness on Seuss Glacier,
Lake Bonney, and eastern Taylor Valley soil surfaces are confined to
smaller magnitudes in the NCALM data-set, which could result
either from smoothing of ice surfaces during widespread melting in
2001-2002 (Gooseff et al., 2017) or from the formation of enhanced
roughness at small scales through channel incision. For soil surfaces,
we interpret the roughness changes not to reflect changes to the soil/
permafrost surface, but rather, to reflect enhanced snow cover during
the 2014 survey, which was excluded from volume change calculations
(see Section 3.1).

In addition to the landscape changes described above, two other
landforms warrant consideration: sand dunes in Victoria Valley
(Fig. 11) and the Onyx River braidplain (Fig. 12). These surfaces provide

Area and volume change calculations for the glacier ablation zones in the McMurdo Dry Valleys®.

Site name Area (m?) Volume change (m?) Volume change Mean elevation Mean elevation change
uncertainty (m>) change (m) uncertainty (m)
Taylor Valley sites
Commonwealth 7,819,365 —2,940,299 +1,117,314 —0.38 4+0.38
Canada 8,742,436 —5,134,633 +1,951,161 —0.59 +0.38
Suess 1,906,315 —1,106,882 +365,271 —0.58 +0.33
Rhone 1,653,101 —1,189,712 4380,708 —0.72 +0.32
Taylor 88,993,027 35,866,247 414,705,161 0.40 +0.41
Wright Valley sites
Bartley 1,610,403 —1,616,094 +404,024 —1.00 +0.25
Meserve 1,216,454 —539,125 +156,346 —0.44 +0.29
Hart 1,186,942 —272,933 +79,151 —0.23 +0.29
Goodspeed 2,519,629 42,604 +12,355 0.02 40.29
Denton 3,237,322 351,920 +116,134 0.11 +0.33
GMM Valleys
Garwood 3,943,529 —4,438,757 42,485,704 —1.13 +0.56
Miers 4,773,513 —10,005,749 45,202,989 —2.10 +0.52
Joyce 1,559,768 —268,387 +118,090 —1.72 +0.44
Adams 2,045,894 —3,253,292 +715,724 —1.59 +0.22
Barwick Valley sites
Barwick 4,090,972 —1,788,556 +769,079 —0.44 +0.43
Beacon Valley sites
Friedman 1,928,724 —447,487 +116,347 —0.23 +0.26
Victoria Valley sites
Victoria Upper 13,617,209 76,887 422,297 0.01 40.29
Victoria Lower 5,385,597 —1,502,964 +450,889 —0.28 +0.30
Packard 336,000 —181,870 +49,105 —0.54 +0.27

2 The mean elevation change is the volume change divided by the area. Mean changes smaller than 4-25 cm are not distinguishable from data set intercomparison uncertainty. Reported
uncertainty is derived from the root mean square error of elevations from multiple control area around each glacier.
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Fig. 7. Elevation changes of lakes and ponds in the McMurdo Dry Valleys between 2001 and 2002 and 2014-2015 lidar surveys.

information of landscape evolution in the MDV in which sediment
transport, rather than ice loss, dominates. As with permafrost, glacier,
and stream results reported above, these measurements provide a
new baseline for future landform monitoring studies.

Sand saltation flux in the MDV is highest in Victoria Valley (Gillies
et al., 2013), resulting in rapidly moving bedforms (1.5 m y~') based
on the 2001/2002 lidar survey and on 1961 aerial photography
(Bourke et al., 2009), which may result from enhanced sediment trans-
port during the austral summers when sand is less cohesive as a conse-
quence of moisture/ice ablation within the sand grains (Bristow et al.,
2010). Victoria Valley, similarly to other McMurdo valleys, is subjected

 Buriedice’
e

to bimodal wind direction with predominantly westerly winds during
the austral winters and easterly winds during the austral summers
(Nylen and Fountain, 2004).

Two notable dune fields are present in the Victoria Valley: whaleback
dunes located along the center of the valley axis and Packard dunes adja-
cent to the north side of the valley (Bristow et al., 2010). The changes in
both landforms are visible in lidar elevation change observations as alter-
nating aggradation/subsidence bands resulting from migration of the
bedforms. In elevation difference images (e.g., Fig. 11), bedforms migrate
in the direction of negative to positive-color-coded change, showing ele-
vation loss where the dune crest was and elevation gain where it has

Bk

Fig. 8. Ground view of Alph Lake basin. Debris-covered (RSD) ice is melting to form a thermokarst lake at this site. Cliff face is ~22 m tall. Photo credit: Logan Schmidt.
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migrated to. Notably, two adjacent dune fields in eastern Victoria Valley
(Fig. 11) show opposite senses of migration over a ~1 km bend in the val-
ley resulting from a combination of topographic wind-shadowing and
seasonal wind flow directions (Bristow et al., 2010). Packard dunes mi-
grate westward due to the combination of topographic sheltering (solar
radiation) and a predominant exposure to easterly winds (Bristow et al.,
2010). Conversely, topographically exposed whaleback dunes, located in
the center of the valley, are influenced by strong westerly katabatic and
foehn winds; consequently they migrate eastward (Bristow et al.,, 2010).
The dichotomy in migration direction of proximally located dune fields
within the same valley highlights the complex surface process interac-
tions with microclimate that can be resolved by this data-set.

The 2014-2015 lidar survey allows us to provide an update on previ-
ously quantified migration rates of the Packard dune field only (for
which previous migration rate data exist). Mean distance between
dune crests were determined using the following method: i) selected
dune crests were outlined based on hillshade DEMs from both lidar

surveys, ii) the polylines of the 2001 survey were converted to points
(Feature Vertices to Points tool in ArcGIS), iii) distance between points
and polylines were obtained (Near tool in ArcGIS), and iv) mean dis-
tances were calculated using the Summary Statistics tool in ArcGIS. Be-
tween the 2001-2002 and 2014-2015 lidar surveys, an average
migration rate of Packard dunes was 1.4 m y~', which is consistent
with the previously published migration rate of 1.5 m y~! (Bourke
et al., 2009).

Finally, the Onyx River (the longest river in Antarctica) was not in-
cluded in the above change detection observations owing to incomplete
coverage of the river in the 2001 point cloud and notably sparse and
noisy coverage near its terminus in Lake Vanda. However, where
NASA and NCALM data sets overlap, details of channel morphology
change can be observed (Fig. 12). The Onyx consists largely of braided
and sinuous channel reaches with actively changing alternate bars—
however, possible point bar growth and incipient meander formation
are visible in some locations (Fig. 12). If future observations of the
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Fig. 9. Elevation and surface elevation change for Ward Stream. Ward's upper reaches cross ice-cemented permafrost, while its downstream ~600 m of flow path cross ice-cored drift
surfaces. Note that the ~300 m elevation contour (maximum RSD elevation) and the ~1500 m along-track marker coincide, marking a transition from little elevation change to
moderate. Large elevation changes occur where ice-cored drift material is fully intact and actively being eroded (gray box).
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Onyx River channel show that these reaches are evolving as meanders,
it would suggest that meanders can evolve in fluvial systems in which
bank cohesion is not provided by vegetation (Braudrick et al., 2009),
which is absent at this site, but rather by ice-cemented permafrost.

5. GPR results

Buried ice masses with few to no internal reflectors are common in
the MDV (Fig. 13) and are concentrated near valley bottoms. By frac-
tional track length, ~50% of ice identifications were located at or below
100 m elevation (representing 36% of 2014 survey track length), and
94% were at or below 350 m elevation (on 89% of track length)—typi-
cally taken as the maximum RSD elevation (Hall et al., 2015). More bur-
ied ice appears to be present in the coastal regions, consistent with the
more frequent presence of thermokarst, which is presumed to reflect
buried RSIS that intruded into the valleys, most recently during the
LGM. For example, divers at New Harbor, Taylor Valley documented
an underwater ice wall adjacent to the shore (Stockton, 1983;
Stockton et al., 1984). The GPR transects from the shore inland are ini-
tially blocked by strong signal attenuation resulting from a high salt
content, after which buried ice is detected. Valley-bottom buried ice
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extends 1.7-1.8 km inland and thickens until the penetration limit of
the GPR was reached.

Along the MDV coastline, notably rough terrain was observed asso-
ciated with buried ice GPR detections, compared to smoother terrain as-
sociated with the absence of buried ice detections. Morphologically
similar surfaces are present along the coast of both the central (Taylor
Valley) and southern MDV (Fig. 13). Based on the field observations
and GPR data, we infer and outline the extent of buried ice along the
shorelines of the valleys, as shown in Fig. 13.

6. Discussion

Repeat lidar imaging of the MDV in 2001 and 2014 has revealed the
presence of widespread changes at the landscape scale. Glaciers are
thinning and smoothing, streams are incising deeply into buried ice,
thermokarst ponds are forming and expanding, and a hydrologic transi-
tion from water storage in ice to water storage in streams, lakes, runoff,
and groundwater is occurring. Here we discuss these changes to the
MDV landscape, their potential causes, and their relationship to
cryosphere landscape change observed globally.

Fig. 10. Subsidence (reds and yellows) associated with nearby GPR-detected buried ice (pink) and nondetections (green). Where no difference color-coding is shown, elevation change is
<425 cm. (a) Garwood Valley buried ice lobe, (b) Delta Stream, (c¢) Commonwealth Stream, and (d) Suess Glacier Gully. GPR tracks in panel A use data from (Fountain et al., 2014); panels
b, ¢, and d show tracks from this study. Panel (d) shows side-by side lidar hillshade with subsidence (left) and the unaugmented hillshade (right), highlighting the margins of the debris-
covered glacier (DCG) or rock glacier (RG) lobate landform in which the Suess Glacier Gully gully is forming. Positive elevation change in a) is associated with thermokarst pond filling and

slumping deposition of sediments in steep-sided pond banks.
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With two airborne lidar campaigns, is it possible to determine
whether landscape change measured by this study was:
i) instantaneous (all change occurred in one episode, for example
the 2001-2002 flood year, ii) episodic (change occurs in punctuated
periods of activity, for example, during one or two weeks each year
of the austral summer), or iii) steady state (change is incremental
and nearly uniform over time)? Based on hydrological and ground—
based lidar observations collected during the period between the
two airborne surveys, we argue that the subsidence and pond/lake
level change we observe is episodic in nature.

The MDYV is still responding to the austral summer of 2001-2002
(Doran et al., 2008; Fountain et al., 2016b; Gooseff et al., 2017). While
closed-basin lake level rises associated with the 2001-2002 summer
and illustrated in Doran et al. (2008) are dramatic (tens of centimeters
in one summer), they are part of a decades-long trend in lake level
rise in the MDV noted by other authors (e.g., Castendyk et al., 2016)
(Fig. SD). These multiyear observations suggest ongoing, episodic trans-
fer of water from sources (glaciers, snow, and ground ice) to lakes and
ponds, which has been occurring throughout the study interval. Like-
wise, landscape changes such as subsidence have been occurring at an
ongoing (and in places, accelerating) rate in locations such as Garwood
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Valley, with incremental ice loss in the 10°-10% of m?/y occurring every
summer over a 2009 to 2012 study interval (Levy et al., 2013b) (Figs. SB,
SC). Finally, interannual changes in ice loss can be observed at Alph Lake
that span 1983 to 2017 (Fig. SD).

Together, we interpret these past studies and observations to indicate
that melting and erosion are episodic in the MDV, occurring predomi-
nantly during summer months, but with some interannual variability.
Erosion rates measured in glaciated regions are commonly reported in
m/y, despite strong episodicity in these polar and alpine environments
(e.g., Ganti et al.,, 2016). Accordingly, we report average net rates to be
consistent with investigations in other glacial environments (Fig. 5), al-
though they should be interpreted as integrations of nonuniform rates,
rather than evidence of a continuous erosion process.

Glacier mass balance change stands out as an area where the 2001
and 2014 surveys cannot fully resolve change. Unfortunately, the lidar
surveys were restricted to glacier ablation zones and did not cover any
glacier entirely. Therefore, these changes cannot be considered glacier
volume changes and cannot be compared directly to mass balance ob-
servations in the MDV (Fountain et al., 2016a). Commonwealth Glacier
is the only glacier surveyed that also has a mass balance record. Over the
period of time from November 2001 to November 2013, the glacier lost
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Fig. 11. Dunes in Victoria Valley near 77.37835 S, 162.19434 E at the Vida East study site (see Fig. 1). (a) is a hillshade rendering of the two dune fields for which elevation change is shown
in sections (b) and (c). Dunes are located adjacently around a bend in eastern Victoria Valley near site 20 (Vida East). Dunes are highlighted in part a by black boxes. Section (d) shows
comparative dune positions from section (C), modified from Bourke et al. (2009), with new (2014) lidar-derived dune crest location shown in blue.
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a total of —0.95 + 1.13 m water equivalent of ice that is consistent with
a thinning of its ablation zone of —0.38 + 0.38 m. One glacier had a
thickened ablation zone: Taylor (40.40 &+ 0.41 m). Thickening ablation
zones typically indicate a mass gain for a glacier. Although ablation in
the lower part of Taylor Glacier has decreased slightly over the period
between surveys, it is insufficient to explain the observed thickening.
Moreover, the glacier has not advanced during this period. The time-
scale response of the glacier exceeds well over 10° years, suggesting
that the thickening could be a response to a climate perturbation in
the distant past (J6hannesson et al., 1989; Harrison et al., 2001; Roe
and O'Neal, 2009; Ganti et al., 2016).

We argue that the observed smoothing of glacier and lake surfaces is
real and not a result of different population of points between the two
scans. As a test, the point data generated by NCALM was randomly
sampled to match the number of points in the NASA data. The relative
frequency of roughness was recalculated yielding no significant differ-
ences. We conjecture that the smoothing of the ice surfaces is a result
of the 2001-2002 summer when air temperatures reached 4 °C for
about a two-week period (Doran et al., 2008). During this period, abla-
tion via melt was extensive, tens of centimeters on many lakes and gla-
ciers. This ablation smoothed the icy surfaces, removing the larger
roughness features. We conjecture that steep, high-angle surfaces were
subject to greater total insolation, resulting in enhanced melting, and
also had been darkened through capture of windblown sediment, further
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enhancing insolation-driven melting. The meltwater during this period
filled in the depressions and froze in the latter part of the summer
when the heat wave dissipated and air temperatures again cooled
below freezing. Because lidar collection in 2001 largely did not capture
this melt pulse (Fig. 14), we can only report on changes detectable
through comparison of our two point clouds, making it impossible to
precisely determine timing at finer temporal scales.

In contrast to the exposed ice surfaces of lakes and glaciers that are
sensitive to episodic weather events, soil and stream bank site change
appears to be largely substrate-controlled. As noted above, the largest
gross volume changes in soil and streams locations are observed in
areas with buried ice (e.g., Alph Lake in the Ross Sea Drift, Garwood Val-
ley, Commonwealth Stream). The same is true for the fastest erosion
rates—although it is notable that the second fastest rate measured in
this study is in a small thermoerosional gully in Taylor Valley (Suess Gla-
cier Gully). We infer that the rapid apparent subsidence rate results
from the small spatial footprint of the landform coupled with the con-
centrated ice loss and runoff of meltwater at the site.

What connects many of the largest gross erosion sites is the presence
of shallow buried ice deposits (Fig. 10). Stream thermokarst erosion has
generated large topographic subsidences in ice-cored surfaces, such as
the Ross Sea Drift (RSD), which fills much of the mouths of many of
the MDV (e.g., Miers, Marshall, Garwood, and Taylor valleys) below
~300 m elevation. In contrast, inland streams and those outside of RSD
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Fig. 12. Two reaches of the Onyx River downslope of the Clark Glacier study site (see Fig. 1). Image sets a/b/c and d/e/f are lidar hillshades from 2001 and 2014, respectively, coupled with
elevation change. Note potential evolution of alternate bars, A in panel (b), in the main channel in a braided section of the river. Panels c and d show possible point-bar like changes to the
Onyx channel, P, where incision (elevation loss) has occurred on the outside bank of the river, with small amounts of deposition (bar growth) on the inner bank of a bend.
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Fig. 13. Ground penetrating radar tracks. Green indicates no massive ice detected and pink indicates the presence of buried ice. Orange shading indicates inferred extent of buried ice
associated with the Ross Sea Drift, after Stuiver et al. (1981), modified based on field observations and GPR buried ice detections.

buried ice areas (e.g., in Wright Valley) are not incising deeply, and typ-
ically channel-average erosion rates are not more than a few mmy~—'.
Streams in areas with high sand fluxes and little buried ice
(e.g., Victoria Valley, Lost Seal) show net aggradation or sediment
deposition.

Rapid and large-scale formation of thermokarst ponds and
thermoerosional stream channels suggests that many portions of the
MDV may be experiencing a transition to Arctic-like thermokarst mor-
phologies. Like Farquharson et al. (2016), we see subsidence across soil

10 +

Temperature (°C)

types and landforms, with the primary control being the presence of
massive buried ice. Unlike (Farquharson et al., 2016), we see subsidence
in low-lying, low-slope areas with impeded drainage (e.g., Alph Lake, the
Garwood Valley RSD lobe) and also high on steep valley walls (e.g., Suess
Glacier Gully). This highlights the continued importance of insolation-
driven melting in the MDV, where steep slopes with overlying or over-
hanging sediment are exposed to near-normal summertime illumina-
tion, leading to the potential for rapid meltout of high elevation ice
deposits on steep slopes (Conovitz et al., 1998; Levy et al,, 2013a).

20 .
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Fig. 14. Summer air temperatures at Lake Hoare in 2001-2002. Lidar data were collected prior to the late season melt event (marked with an arrow) described by Doran et al. (2008) and

Gooseff et al. (2017).
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6.1. Proposed mechanisms controlling regional landscape change

We interpret these landscape changes to indicate that physical and
hydrological processes associated with heat capture and transfer into
the subsurface are widespread in the MDV. At the top of MDV
watersheds, glaciers appear to be thinning and darkening, resulting in
increased runoff into stream channels. Numerical modeling of short-
wave insolation capture indicates that albedo reductions of as little as
3% are sufficient to explain observed changes in stream discharge
(e.g., Hoffman et al., 2016).

Streams and groundwater in the MDV function as important path-
ways for heat. Where ground ice is present in MDV stream banks, we
observe thermokarst erosion, bank undercutting, and release of nutri-
ents, solutes, and sediments into streams (Gooseff et al., 2016;
Sudman et al., 2017). Energy collected from glacial runoff is reaching
MDV lakes and raising lake heat content (Gooseff et al., 2017).

Subsidence, sediment mobilization, and glacier/ground ice melting
may be beginning to drive positive feedbacks across the MDV landscape.
When sediment on glacier ablation zones reduces albedo, solar energy
absorption and melt increase (Rippin et al., 2015; Hoffman et al.,
2016) adding to surface fine-scale roughness, which slows the wind
speed and captures more eolian sediment, further reducing albedo
and heat loss to the atmosphere. Similar feedbacks exist for active
layer soils. When soils become wetted, either within stream and lake
margin hyporheic zones, or within water tracks or thermokarst drain-
age pathways, soil thermal diffusivity can rise two- to eightfold (Levy
and Schmidt, 2016), leading to enhanced delivery of heat to buried ice
in poorly drained soils. This exacerbates melt rates in stream hyporheic
zones and in wet active layer soils. Together, we interpret these pro-
cesses as potentially self-reinforcing drivers of the observed landscape
changes in the MDV. Hallmarks of this change in MDV hydrogeology
are i) enhanced heat transport into lakes, frozen ground, and other
cold reservoirs in the MDV that have been largely unchanged since
LGM time or earlier; and ii) a transition of water storage from ground
ice and glaciers to lakes and ponds.

We propose that two related processes are responsible for the land-
scape changes observed: one trend operating at decadal timescales and
another discrete event triggering a decadal geomorphic response. First,
between 1991 and 2000, mean summer solar radiation in MDV in-
creased by 25% where it remained at elevated levels until 2012 (Obryk
et al., 2018). Although mean summer air temperatures were cooling
through this period by almost 1 °C (Doran et al., 2002b; Gooseff et al.,
2017), the increase in solar energy more than compensated for sensible
heat flux loss, at least for the sediment-covered surfaces with compara-
tively lower albedo, and for wetted sediment surfaces.

The triggering event was a short warm episode during mid-summer
2001-2002. A drainage wind event adiabatically warmed the atmo-
sphere in the MDV to temperatures several degrees above freezing
and the temperatures remained elevated for almost two weeks
(Doran et al., 2008). During that period glacier ice rapidly melted, ex-
posing sediment entombed in the subsurface; and streams and rivers
flooded to a scale seen only twice before in the instrumented record
since 1970 (Castendyk et al., 2016). During this period lake and pond
levels rose rapidly. The fast, relatively warm stream flow; mechanically
and thermally eroded the streambeds down to the ice-cemented per-
mafrost boundary beneath the streambeds. Where massive ice was en-
countered, rapid erosion occurred followed by bank collapse and
further erosion continued tunneling through the massive ice in some
stream reaches (e.g., Garwood River). These processes set in motion a
sequence of geomorphic changes that have continued for another
decade.

We suggest that in the following years—under conditions of elevated
solar radiation, constant summer air temperatures (Gooseff et al.,2017),
and increased heat content of streams—landscape changes continued,
partly responding to the flood event of 2001-2002 and partially from
the elevated solar radiation. Insolation-driven glacial melt discharge

was elevated despite constantly cool temperatures, contributing to con-
tinually increasing lake and pond levels.

7. Conclusions

Repeat lidar measurements of glacial, soil, stream, and lake surfaces
in the McMurdo Dry Valleys show evidence of widespread ground sub-
sidence, glacial ablation zone thinning and smoothing, and lake/pond
level rise. The GPR observations indicate that soil subsidence is strongly
associated with the presence of excess ground ice in the form of ice-
cored moraines and tills. While not all locations of massive ground ice
were found to be subject to subsidence, all notable subsidence observed
is associated with massive ground ice. Thinning of glacier ablation zone
surfaces along with thermokarst subsidence of soil surfaces suggest the
possibility of widespread positive melting feedbacks, where melting of
glacier surfaces and wetting of soil surfaces results in additional heat
capture and delivery to ice, resulting in further darkening and melting
of glacier surfaces and wetting and darkening of soil surfaces. While
landscape changes are concentrated in locations with excess ground
ice in the coastal thaw zone, changes to lakes and ponds are occurring
across microclimate zones in the MDV. This expansion of thermokarst
disruption and glacial change provides the physical backdrop for
interpreting biotic change in the MDV, even in the stable upland zone.
The widespread presence of massive ground ice indicates that many
surfaces in the MDV will potentially undergo rapid (years to decades)
subsidence of decimeters to decameters, resulting in changes to drain-
age, energy balance, and soil structure. Such potential for rapid and
widespread change in coming years suggests that collection of topo-
graphic measurements on finer timescales than once per decade may
be necessary to effectively manage the MDV natural laboratory and to
prioritize melt-threatened sites for research before they are trans-
formed by melting and subsidence.
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