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Abstract

Mountain glaciers integrate climate processes to provide an unmatched signal of regional cli-
mate forcing. However, extracting the climate signal via intercomparison of regional glacier
mass-balance records can be problematic when methods for extrapolating and calibrating dir-
ect glaciological measurements are mixed or inconsistent. To address this problem, we rea-
nalyzed and compared long-term mass-balance records from the US Geological Survey
Benchmark Glaciers. These five glaciers span maritime and continental climate regimes of
the western United States and Alaska. Each glacier exhibits cumulative mass loss since the
mid-20th century, with average rates ranging from −0.58 to −0.30 m w.e. a−1. We produced
a set of solutions using different extrapolation and calibration methods to inform uncertainty
estimates, which range from 0.22 to 0.44 m w.e. a−1. Mass losses are primarily driven by
increasing summer warming. Continentality exerts a stronger control on mass loss than lati-
tude. Similar to elevation, topographic shading, snow redistribution and glacier surface fea-
tures often exert important mass-balance controls. The reanalysis underscores the value of
geodetic calibration to resolve mass-balance magnitude, as well as the irreplaceable value
of direct measurements in contributing to the process-based understanding of glacier mass
balance.

1. Introduction

Implications of glacier mass loss span global (Gardner and others, 2013; Marzeion and others,
2017; Zemp and others, 2019) to local scales (e.g. Moore, 1992; O’Neel and others, 2015; Sass
and others, 2017; Schoen and others, 2017). Yet resolving regional patterns of mountain gla-
cier mass loss remains challenging (e.g. Gardner and others, 2013; Box and others, 2018;
Menounos and others, 2018), in part due to the paucity of long-term records, and in part
due to the complex response of glaciers to climate forcing (Oerlemans, 2000; Roe, 2011).
Modern remote-sensing capabilities enable rich analytical insight, but direct glaciological
observations remain irreplaceable for capturing short-term (seasonal, interannual) changes
and contributing to the process-based understanding of mass balance. However, comparisons
drawn from these field-based records can be complicated by differences in data collection and
analysis methods. For example, glacier-wide mass-balance estimates can be produced using
multiple approaches to extrapolate point measurements to the entire glacier area, including
mass-balance profiles (Fountain and Vecchia, 1999; Krimmel, 2000), an area-weighting
(site-index) method (e.g. March and Trabant, 1996; van Beusekom and others, 2010), linear
regressions between a single stake to robust observations from previous years (Krimmel,
1989), contour mapping (Meier and others, 1971), as well as inclusion of ad-hoc correction
factors (e.g. van Beusekom and others, 2010). The magnitude of variance and resultant uncer-
tainty from mixing these approaches has never been quantified and could be significant, high-
lighting the need for common intercomparison and interpretation frameworks for
mass-balance datasets (Huss and others, 2009). Additionally, systematic reanalyses of mass-
balance time series (e.g. Zemp and others, 2013) helps facilitate refinement of ongoing prac-
tices of long-term field programs by providing insight into biases introduced as technology
evolves, and by linking individual steps of the analysis to overall estimates of uncertainty in
mass-balance estimates.

The main objective of this study is to present a unified mass-balance reanalysis for the five
US Geological Survey (USGS) Benchmark Glaciers (Gulkana, Wolverine, Lemon Creek, South
Cascade and Sperry glaciers). To accomplish this, we first describe in detail a consistent, adapt-
able approach for estimating glacier-wide mass balance at annual and seasonal time steps from
an inconsistent suite of observations. Our reanalysis includes an examination of several point-
balance extrapolation and geodetic calibration approaches that capitalize on the increased
availability and quality of aerial and space-borne imagery to minimize systematic errors in
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field data. Finally, we use the reanalysis results to gain broad spa-
tial and temporal insight into glacier response to climate forcing.

2. Background and setting

The concept of a continental scale investigation of North American
glacier-climate linkages dates to the 1957 International Geophysical
Year (IGY; American Geographical Society, 1960). USGS initiated a
mass-balance program at Washington’s South Cascade Glacier as
part of the IGY (Meier, 1958), which was the first step towards a
long-term programmatic effort to document and understand
glacier-climate linkages. During 1966, as part of the International
Hydrological Decade (IHD), the project expanded to Gulkana
and Wolverine glaciers in Alaska (Meier and others, 1971) and
more recently to Montana’s Sperry Glacier in 2005 (Clark and
others, 2017). We also include mass-balance data from southeast
Alaska’s Lemon Creek Glacier, traditionally maintained by the
Juneau Icefield Research Program (JIRP). This glacier fills the geo-
graphic gap between the glaciers of the contiguous USA and main-
land Alaska, prompting USGS to initiate seasonal mass-balance
observations that augment the ongoing JIRP’s summer-season
efforts (Pelto and others, 2013). Logistics and scientific value played
fundamental roles in site selection, with consideration of access,
hazards and in some cases a history of previous research (Meier
and others, 1971; Fountain and others, 1997). Representativeness
of regional climate also influenced the selection process. The
study glaciers span the primary North American climate regimes
that support glaciers: midlatitude maritime, midlatitude continen-
tal, high-latitude maritime and high-latitude continental (Fig. 1a).

Gulkana Glacier (GG; Fig. 1b) is located in the high-latitude
continental climate regime of Alaska’s Delta Mountains. USGS
established an observation program here that included measuring
snow and ice mass balance at three sites (nominally), a weather
station (air temperature, precipitation, wind) installed on the gla-
cier margin below the long-term equilibrium line (ELA) and a
streamgauge on the outlet stream below the glacier. Two auxiliary
weather stations were added to the network after 2010. The basin
area above the USGS streamgauge is 31.5 km2, and the glacier area
decreased from 18.7 to 16.0 km2 from 1967 to 2016 (Table 1).

Wolverine Glacier (WG; Fig. 1c) is found in the high-latitude
maritime climate regime of Alaska’s Kenai Mountains. In 1966,
simultaneous with GG, USGS established an observation program
that included measuring snow and ice mass balance at three sites
(nominally) (Mayo and others, 2004; O’Neel and others, 2014), a
weather station (air temperature, precipitation, wind) installed on
the glacier margin below the long-term equilibrium line (ELA)
and a streamgauge on the outlet stream below the glacier. An add-
itional weather station was added in 2012. The basin area above
the USGS streamgauge is 24.6 km2, and the glacier area decreased
from 17.1 to 15.6 km2 from 1969 to 2018 (Table 1).

Lemon Creek Glacier (LCG; Fig. 1d) is located in the maritime
high-latitude climate regime. Snow and ice mass-balance observa-
tions began in 1953, making LCG the longest record presented
here (Miller and Pelto, 1999; Pelto and others, 2013). Extensive
observations characterize the efforts through the first two decades
of research, which transitioned into the modern five-site network
following the IHD, ∼1970. The early program included weather
observations near the glacier, and a streamgauge on the outlet
stream. However, in our analyses, frequent and extended discon-
tinuities required using nonlocal meteorological data from the
Juneau Airport. The airport is located 13 km from the glacier at
sea level (Station ID: USW00025309; ncdc.noaa.gov). The basin
area above the USGS streamgauge is 31.9 km2 and the glacier area
decreased from 12.8 to 9.7 km2 between 1948 and 2018 (Table 1).

Research began at Washington State’s South Cascade Glacier
(SCG; Fig. 1e) in 1958 (Meier, 1958). SCG represents the

midlatitude maritime climate, characteristic of the North
Cascade Mountains. The glacier program included weather mea-
surements (air temperature, precipitation, intermittently main-
tained) and a streamgauge on the outlet stream of the lake in
front of the glacier. A new, seasonal gauge was installed just
below the glacier in 2002. Measurements strategies (e.g. stake net-
works, measurement dates) varied through time, but, on average,
five seasonally measured sites form a continuous record of mass-
balance observations. The basin area above the USGS streamgauge
is 6.1 km2 and the glacier area decreased from 2.9 to 1.8 km2

between 1958 and 2015 (Table 1). SCG is the only Benchmark
Glacier that calved icebergs for a portion of its record. The glacier
terminated in a lake from ∼1930–1975, but calving is thought to
not have influenced mass balance significantly (Horlings, 2016).

Sperry Glacier (SG; Fig. 1f) is located along the Continental
Divide within Glacier National Park, Montana, and represents
the midlatitude continental or transitional climate. Seasonal
mass-balance observations began in 2005 at six sites, complimen-
ted by historic photographic and topographic map records
(Johnson, 1980) that provide longer-term context to the 14-year
field program. A weather station installed on the glacier’s western
margin during 2006 records temperature, humidity, wind speed,
wind direction and solar radiation. The glacier resides in a
∼4 km2 hanging cirque, that contains several small, ungaugeable
outlet streams that pour over cliffs at the cirque boundary. As
of 2015, the glacier had an area of 0.80 km2 (Fagre and others,
2017), only slightly reduced from the 1950 area of 1.3 km2, mak-
ing SG the smallest of the benchmark glaciers (Table 1).

3. Data

Glacier-wide mass-balance estimates require several classes of
data, including direct glaciological measurements (accumulation
and ablation), meteorological data (temperature and precipita-
tion) and descriptions of the glacier hypsometry (area, area-
elevation distribution), which are derived from the air- and space-
borne imagery. The comprehensive dataset used in the reanalysis
is available for download (Baker and others, 2018).

3.1 Point mass-balance data

A primary emphasis of this reanalysis involved consistent aggre-
gation of ablation stake and snowpit data to estimate point
mass balances. All possible data were incorporated into surface
height change estimates before they were scaled by material
(snow, firn, ice) density to obtain a mass balance (m w.e. a−1).
We prescribe an ice density of 900 kg m−3. For snow pits or
cores, density is measured through the entire snowpack, from
which a column-average density is calculated. Stakes are used to
estimate ablation in a stratigraphic, floating-date time system by
measuring the snow or ice level relative to the presumably fixed
stake (Cogley and others, 2011). Measurement sites were estab-
lished at fixed locations (index sites) early in each project.
Stakes are installed upstream of, or at index sites, then replaced
seasonally (SCG, SG), biennially (GG, WG, LCG) or as needed
to prevent meltout or flow into a different mass-balance regime.
When the glacier surfaces are snow-covered, depth measurements
to ice or the previous summer surface (firn) are performed in
snow pits or by extracting a core if snowpack exceeds ∼2 m.
Identification of the previous summer surface can be challenging
in cores, which intermittently led to this surface being marked
with sawdust, colored chalk or hardware cloth to facilitate inter-
pretation. Probe observations often augment snow pits to better
capture spatial variability of seasonal snow depths.

Field visits are scheduled to approximately coincide with the
mass extrema, though our reanalysis approach (Section 4.1)
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accounts for mass changes that may occur between measurement
date and seasonal mass extrema. To minimize the magnitude of
these modeled adjustments, we measure winter ablation that
occurs after fall field visits (measured the following spring) and
summer accumulation (measured during fall visits) to ensure
that these components are distributed to the appropriate balance
years. Reconstructing these mass-balance components was not
always possible in the early record when mass-balance practices
were still being refined.

Measurement networks and protocols vary among the glaciers
and in time commensurate with changes in staff, funding and the
ever-evolving knowledge base. In all cases, measurement sites
were located in areas thought to be representative of broad regions
of the glacier (Fig. 1). Except for SG, original site selections pre-
date all current project staff.

Three fixed sites characterized the WG and GG programs over
most of the record, distributed with the intention to represent the
mass-balance regime of the ablation zone, the equilibrium line
altitude (ELA) region and the accumulation zone. At SCG and
LCG, site consistency was not emphasized over much of the
record; rather, measurements occurred in general regions (typic-
ally, 5–10 sites). JIRP assembled the majority of the LCG record,
which is characterized by a single late-summer, accumulation
dominated set of annual observations (Pelto and others, 2013;
McNeil, 2016). Data from LCG and SCG required additional

efforts to prepare input for standard processing (Supplementary
Material). At SG, the influence of wind and avalanching was
recognized early on, leading to a stake network that spans both
the width and length of the glacier.

Upgrades to observation networks occurred throughout the
project history. Since the late 1990s, SCG sites were distributed
at quasi-regular elevation intervals along the glacier centerline.
Network size increased two- to threefold at GG and WG after
2010 (Fig. 1). Seasonal measurements began at LCG in 2013.
The number of snow pits used to determine accumulation rates
and gradients remained variable among the glaciers, ranging
from one annually on SG to five on LCG. New index sites have
been periodically established to accommodate retreat beyond the
lowest elevation sites at many of the glaciers. In accord with the
concepts of the USGS Benchmark Glaciers, extensive ablation
stake networks were used early on to determine sparse-network
site representativeness (e.g. Tangborn and others, 1975), but
these efforts were later halted, and only recently reinitiated.

3.2 Meteorological data

For WG and GG, meteorological stations installed within the
watershed (Fig. 1) provide daily estimates of average air tempera-
ture and total precipitation catch, but discontinuous local records
for SCG, LCG and SG required the use of continuously operating
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Fig. 1. (a) USGS Benchmark Glacier locations (colored cir-
cles), with North American glacier extent from Global Land
Ice Measurements from Space database (GLIMS) shown in
cyan (GLIMS and NSIDC 2005, updated 2018). Individual gla-
ciers and surrounding topography are mapped in panels
(b–f): (b) Gulkana, (c) Wolverine, (d) Lemon Creek, (e)
South Cascade and (f) Sperry glaciers show the modern gla-
cier outline in a color corresponding to the glacier in panel
(a), and midcentury (1948–58) glacier extent in black.
Mass-balance measurement sites (index sites) are labeled
with site names and dots. Large dots indicate long-term
index sites, and small dots indicate shorter length records.
Local weather stations used for climate forcing are shown
with a pink star at Wolverine and Gulkana glaciers.
Additional weather stations adjacent to the glaciers are
shown with a green star. Streamgages at Gulkana,
Wolverine, and South Cascade glaciers are shown with a
blue square. Scale bars vary among panels.
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distant weather stations (Wheler and others, 2014). We chose to
use the local stations at GG and WG, as relatively few data gaps
exist (Table S1), and regional lapse rates are poorly defined. At
these two stations, we fill short (<3 day) gaps using linear inter-
polation and long gaps via monthly regressions with data from
distant stations, typically at lower elevations (van Beusekom and
others, 2010). Further details of the USGS-maintained instrumen-
tation, changes to instrumentation and quality control are pro-
vided in the Supplementary Material.

3.3 Geospatial data

A suite of 33 DEMs provide geometric and geodetic constraints
on the mass-balance reanalysis (Tables S2–S6). Through ∼2008,
stereo aerial photography of SCG, LCG, WG and GG was

episodically acquired as time and budgets allowed. These historic
data were reprocessed using Structure from Motion (SfM) photo-
grammetric methods to produce higher-accuracy DEMs (e.g.
Westoby and others, 2012). Since 2008, airborne imaging has largely
been replaced by optical commercial satellite imagery from the
DigitalGlobe constellation (Neigh and others, 2013). This sub-meter
resolution imagery along with automated processing engines have
streamlined the DEM production process (e.g. AMES stereo pipe-
line; Shean and others, 2016). Exceptions to optical acquisitions
include the 2000 (SRTM; https://earthexplorer.usgs.gov/) and 2013
(IfSAR; http://ifsar.gina.alaska.edu) LCG DEMs, which were pro-
duced from synthetic aperture radar products, and the 2016 WG
DEM, which was produced from airborne lidar.

Glacier hypsometry (area-elevation distribution) was first
determined by digitizing the glacier margins in available

Table 1. Geodetic analyses data including acquisition year, mass balance, glacier area (km2) and fractional area change relative to the reference DEM

Glacier Year
Geodetic mass balance

(m w.e.)
Uncertainty
(m w.e.)

Glacier area
(km2)

Area change
(%)

Gulkana 1967 −26.6 2.80 18.7 14

1974 −23.6 2.49 18.4 13

1979 −19.2 1.86 18.1 12

1993 −16.9 2.52 18.0 13

2005 −6.9 1.28 16.9 5

2007 −5.9 0.60 16.9 5

2016 0 0 16.0 0

Wolverine 1969 −17.2 2.86 17.1 9

1972 −18.0 2.24 17.1 9

1979 −17.1 3.43 17.0 9

1995 −14.9 1.72 16.8 7

2006 −8.7 2.14 16.3 5

2016 −2.4 0.24 15.9 1

2018 0 0 15.6 0

Lemon Creek 1948 −49.6 11.83 12.8 32

1957 −39.9 3.68 12.4 28

1979 −36.7 3.03 12.1 25

1989 −32.5 2.67 11.7 21

1999 −23.4 2.33 10.7 11

2013 −11.2 1.74 10.4 7

2016 −5.3 1.11 10.1 5

2018 0 0 9.7 0

South Cascade 1958 −33.1 3.50 2.9 61

1970 −26.1 1.90 2.7 51

1979 −25.8 1.90 2.7 46

1986 −23.2 2.06 2.6 41

1992 −16.4 1.23 2.3 26

2001 −11.7 1.01 2.2 18

2004 −8.1 1.06 2.1 17

2008 −5.0 0.41 2.0 12

2015 0 0 1.8 0

Sperry 2005 −0.9 1.59 0.86 6

2014 0 0 0.81 0

The reference DEM is indicated with bold, italicized text.
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orthophotographs to obtain total glacier area. The elevation distri-
bution was then assembled by partitioning glacier surface eleva-
tions (from available DEMs) into elevation bins commensurate
with the total elevation range of each glacier (SG: 30 m, SCG:
50 m; LCG, GG, WG: 100 m). Because the DEMs exist on
approximately decadal time steps, we linearly interpolate the
changes in the area within each bin between subsequent DEMs
to produce annual hypsometries.

4. Analysis

To improve confidence in and reproducibility of mass-balance
estimates, as well as to allow direct intercomparison of otherwise
disparate glacier records, we developed a flexible yet consistent
reanalysis approach (Fig. 2). The approach provides the capacity
to evaluate glacier-wide seasonal and annual surface mass balance
in a variety of time systems, reference frames, extrapolation types
and geodetic calibration styles (Supplementary Material).
Common to other mass-balance programs, this approach centers
on fitting a mass-balance profile to point observations (Fig. 3),
then integrating (extrapolating) the profile over the coincident
glacier hypsometry to estimate seasonal and annual mass bal-
ances. The cumulative glacier-wide mass balance is calculated,
then compared with the cumulative geodetic mass balance. If
the two series diverge beyond geodetic uncertainties, a calibration
is performed. We use the word calibration to describe a
least-squares adjustment of the in situ glaciological data to min-
imize the difference with geodetic data (Zemp and others,
2013). Many of the analysis steps require the use of a mass-
balance model (Section 4.2) to resolve changes in mass among
observations (e.g. direct measurements and image acquisitions)
or to coincide with the floating-date time system.

4.1 Estimating glacier-wide mass balance

Mass-balance profiles (e.g. Fountain and Vecchia, 1999; Cogley
and others, 2011) provide an elevation-based parameterization
of point observations (b(z)), through which glacier-wide mass bal-
ance (B) is calculated. For each profile fit, we required a minimum
of three distributed point balance observations: one in the abla-
tion zone, another in the vicinity of the ELA and a third in the
accumulation zone. We explore sensitivity to various interpolation
and extrapolation schemes (Section 4.5) by producing a solution
set with multiple forms of balance profiles (e.g. linear, piecewise-
linear) and the site-index method historically used at GG and WG
(Fig. S5). Ultimately, we use a piecewise-linear balance profile for
interpretation, and the other methods to constrain uncertainties
arising from the balance profile. This piecewise approach can
be applied to almost all seasonal and annual datasets, allows vari-
able profile slopes in the accumulation and ablation zones, and
collapses to a linear profile under many sparse data cases.
Extenuating circumstances occasionally prohibited field data col-
lection at more than two sites requiring infilling as described in
the Supplementary Material.

Resolving glacier-wide mass balance in floating-date time sys-
tems requires estimates to be coincident with seasonal glacier
mass extrema (Cogley and others, 2011). The first step in resolv-
ing extrema is modeling point balance time series at the highest
and lowest elevation sites to bracket the timing of the glacier-wide
extrema. Then daily glacier-wide solutions through the bracketed
interval yield the timing and balance at the glacier-wide extrema
(Fig. S3).

Finally, challenges unique to LCG and SCG prohibited the
reanalysis from extending to the beginning of the record
(Supplementary Material, Table S7), and required splicing with
data from previously published results (WGMS, 2017).

4.2 Mass-balance model

Many time systems require resolving the timing mismatch among
observations (e.g. stakes, DEMs) using a mass-balance model (e.g.
van Beusekom and others, 2010). Model adjustments are generally
applied over short-time intervals (i.e. days–weeks). We estimated
daily point mass balance (b) as the sum of ablation (a) and accu-
mulation (c):

b = a+ c. (1)

Ablation was modeled, using the positive degree-day approach, as:

a = T(T.0◦)ks,i (2)

where T(T.0◦) is a positive air temperature estimate for each meas-
urement site on the glacier and ks,i is an ablation coefficient
(degree-day factor) for snow (s) or ice (i) determined for each gla-
cier. Site temperatures were calculated from weather station obser-
vations using a constant adiabatic lapse rate of −6.5 °C km−1

(Barry, 1992) to account for elevation differences. Ablation coef-
ficients (ks,i) were solved for each glacier using all data over the
entire study period (Table S8) and show general agreement with
literature values (e.g. Braithwaite, 1995).

Snow accumulation was estimated as:

c = P(T,1.7◦)g (3)

where P is recorded precipitation when the temperature was lower
than 1.7 °C and γ a scale factor between the total winter snow
accumulation at a mass-balance site and the respective weather
station (van Beusekom and others, 2010). For routinely measured
sites, site-specific scale factors (γ) were determined, but for sites
measured fewer than three times, we applied a glacier-wide aver-
age scale factor (Table S9).

4.3 Geodetic mass balance and calibration

Geodetic mass-balance time series were constructed from DEM
data (Table 1) to assess and reduce (through calibration) system-
atic biases in the glaciological cumulative balance (Zemp and
others, 2013). The combination of abundant high-quality space-
borne imagery and rapid changes to the glaciers prompted us to
explore several time-windowed approaches.

4.3.1 Geodetic mass balance
For each glacier, DEMs were produced in a common geospatial
reference frame (WGS84) and projection (UTM), and then aligned
using a universal co-registration method (Nuth and Kääb, 2011).
The co-registration minimizes apparent elevation changes across
stable (bedrock), snow-free, off-glacier terrain. The highest quality
DEM in each time series is designated as the ‘reference,’ with
which all other DEMs were aligned (Table 1). Once co-registered,
DEMs were differenced from the reference DEM to yield elevation
change across the glacier surface (Shean and others, 2016; Sass and
others, 2017). Voids in the difference map exceeding 5% of the gla-
cier surface were filled using a regression between the change in
surface elevation and the reference surface elevation (Larsen and
others, 2015). Glacier volume change from the DEM differencing
was converted to mass change by specifying a material density of
850 ± 60 kg m−3, which accounts for the unknown changes in firn
density and volume (Huss, 2013). We do not explicitly account for
internal accumulation or ablation (Oerlemans, 2013; Andreassen
and others, 2016), but given representative precipitation rates
and glacier elevation ranges we can assume none of the glaciers
is subject to significant internal accumulation. We also estimated
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the physical limit of internal melting from dissipative heat and
found it to range only between 0.01 and 0.06 m w.e. a−1 across
the study glaciers.

4.3.2 Geodetic calibration
As the first step in geodetic calibration, we rejected DEMs with
>60% snow-covered area to minimize uncertainty related to
poor constraints on the density of seasonal snow. Next, we
addressed the temporal mismatch between field campaigns and
image acquisition, as acquisition rarely coincides with the timing
of mass minima (Tables S2–S6). Using the mass-balance model,
we adjust the geodetic mass-balance results to account for mass
gains or losses between the DEM dates and the timing of mass
extrema. These adjustments were on average 25 ± 18 days which
amounted to a −0.45 ± 0.51 m w.e. average adjustment on the
cumulative geodetic mass balance. Once both datasets were
migrated to a common time, calibration of the direct time series
occurred.

The most commonly adopted calibration approach involves
applying a sequential adjustment to the direct time series for
each DEM pair in the geodetic time series (Fig. S7; Zemp and
others, 2013). Sequential calibrations minimize the residual differ-
ence of cumulative direct and geodetic mass-balance time series
for each geodetic interval independently. This approach may be
appropriate when a limited number of DEMs exist (e.g. decadal
or longer time spans between acquisitions), and offers the advan-
tage of resolving permanent solutions over the majority of the
record. However, when differencing over short-time intervals
(<5 years), changes in firn structure and the associated density
assumption can introduce substantial aliasing errors in the geo-
detic mass-balance time series.

Alternatively, a global calibration can be developed, with a sin-
gle weighted least-squares fit over the entire time series (e.g. van
Beusekom and others, 2010; O’Neel and others, 2014). Weights
were derived from the uncertainties of each DEM. The slope of
the least-squares fit describes the annualized rate of systematic
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Fig. 2. Flow chart showing reanalysis steps. The extrapo-
lation step (*) uses the glacier hypsometry derived from
geospatial data.
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Fig. 3. Mass-balance profile curve fitting. Using annual balance (ba) as an example (seasonal balances in Fig. S6), we show piecewise-linear fits to all available point
balance data from each glacier with colors matching all other figures (left-hand axis, shown only in (a)). From left to right, (a) Gulkana, (b) Wolverine, (c) Lemon
Creek, (d) South Cascade and (e) Sperry glaciers. Open circles in (b) represent results from a short-term (2016) extensive stake network but these data are not used
to constrain the fitted profile. Hypsometries are shown as bar plots below the profiles (right-hand axes, in gray) The initial hypsometry is shown in dark grey and
the modern hypsometry in lighter grey.
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bias, which was then applied to calibrate the direct time series
(Fig. S7). This global approach has the benefit of fitting through
the maximum number of data points, but the distinct disadvan-
tage that it assumes a uniform bias in the direct method over
the entire period of record. A constant bias may exist for constant
measurement networks, small changes in glacier geometry or
under steady climate conditions, but is highly unlikely to apply
uniformly through periods of substantial glacier change.
Furthermore, it results in changes (generally small) to the entire
calibrated time series each time a new DEM is produced, which
may not be warranted.

We developed a third, hybrid approach, where a piecewise-
linear calibration is fit over ∼10-year intervals (longer if neces-
sary), each of which must contain at least three DEMs (Fig. S7).
This breakpoint approach maximizes the incorporation of geo-
detic data while minimizing errors that arise from simple density
assumptions when there is substantial interannual variability in
glacier mass balance (Huss, 2013). It allows calibration intervals
to coincide with changes in glacier hypsometry, measurement
networks and/or climate. Regardless of the calibration approach
used, annual calibrations are distributed equally between the accu-
mulation and ablation seasons.

4.4 Variability and trend analyses

Mass balance and meteorological time series were analyzed for
correlations, variability and the presence of trends using paramet-
ric (c.f. Medwedeff and Roe, 2017) and nonparametric methods
(e.g. O’Neel and others, 2014). Our parametric approach involved
forming linearly – detrended anomalies, evaluating the normality
of residuals, then using decade-normalized t-statistics (after Roe,
2011) to evaluate and intercompare the presence of significant
trends. To improve confidence in our statistics, a similar process
was followed using the nonparametric Mann-Kendall test
(Hamed and Ramachandra Rao, 1998) on anomaly time series.

4.5 Sensitivity and uncertainty

Traditional error assessment is commonly done from the bottom
up: investigators begin with point balance errors and arrive at error
estimates for glacier-wide balance (e.g. Cogley and Adams, 1998;
Zemp and others, 2013; Beedle and others, 2014). However, this
approach requires assumptions about the relation between point
measurements and the glacier-wide mass balance that are largely
untestable, notably that point measurements adequately represent
mass-balance variability over the entire glacier.

We endeavor to avoid those assumptions using a top-down
approach that partitions the total uncertainty in glacier-wide mass
balance into two components. The first component reflects uncer-
tainty in the temporal trend (i.e. cumulative mass balance), and
the second component relates to annual balance uncertainty.
Trend uncertainty derives from the geodetic balance, while uncer-
tainty in annual balance follows from quantifying the magnitude
of variance from the different extrapolation and calibration methods.
The two terms can be combined to define characteristic uncertainties
for the mass balance at each glacier (Thibert and Vincent, 2009).

4.5.1 Geodetic mass-balance uncertainty
Geodetic mass-balance uncertainty arises from errors in comput-
ing glacier volume change, and errors in the material density
assignment required to convert volume to mass. Volume change
error has two sources: elevation error and elevation data gaps.

Elevation error is characterized by off-glacier elevation differ-
ences remaining after co-registration. In all cases, spatial autocor-
relation areas were smaller than the glaciers, and in some cases the
spatial autocorrelation area may be as small as an artifact of the

total DEM area, which leads to a potential underestimate of
uncertainty. Hence, we use the more conservative normalized
median absolute deviation Nz, as a robust estimate of variance
in a non-Gaussian distribution,

Nz = 1.4826 ·median(|Dz −mDz|), (4)
where Δz are the remaining off-glacier elevation differences
between the aligned DEMs, mΔz is the median of the Δz values
and the coefficient scales the rank-based statistic to provide a
robust estimate of variance compared to the standard deviation
(Höhle and Höhle, 2009; Shean and others, 2016).

Error from infilling elevation data gaps is nonzero when
elevation data are missing over >5% of the glacier surface
(Tables S2–S6). Gaps are infilled using a linear interpolation
model across the glacier surface (Larsen and others, 2015). We
evaluate uncertainty due to gap interpolation with the mean abso-
lute error statistic M, given by,

M = S|r|
n

, (5)

where r is the residual between observed and infilled surface ele-
vation changes, and n is the number of measured values over the
glacier surface.

We combined these two elevation uncertainty components
using the fraction of the glacier surface that required interpolation
( f) and the fraction that did not need interpolation (1− f) to yield
σdz, the total elevation uncertainty, given by,

sdz = Nz(1− f )+ (M + Nz) f . (6)

Finally, we take the total geodetic mass-balance error σg
(m w.e.) as the quadratic sum of the volume change term and a
density term (Beedle and others, 2014),

sg =
��������������������
(sdzg)2 + (dhls)2

√
, (7)

where dh is the area-averaged surface elevation change (m),
and γ and λσ are unitless factors to convert length to water equiva-
lent units. γ takes a value of 0.85 (i.e. 850 kg m−3/1000 kg m−3) to
convert σdz, and λ takes a value of 0.06, i.e. 60 kg m−3/1000 kg m−3

(Huss, 2013). σg represents the total uncertainty over the geodetic
differencing interval, but can be expressed in terms of annual
error with units m w.e. a−1.

4.5.2 Sensitivity tests
Evaluating different methods of point measurement extrapolation
and geodetic calibration offers insight into how the number and
distribution of point measurements affect the resolution of glacier-
wide mass-balance estimates. We characterize the sensitivity of our
methodology by producing a set of nine mass-balance time series,
each of which has a different spatial-extrapolation and/or geodetic-
calibration approach. The solution set consists of the historically
used site-index method (March and Trabant, 1996) and two profile
fitting variations (linear and piece-wise linear). Each of these three
variants is further subjected to three geodetic calibration
approaches (sequential, breakpoint, global; Fig. S7). To characterize
uncertainty, we calculated the normalized median absolute devi-
ation (Ns, Eqn (4) substituting ΔB for Δz) across the solution set,
with the deviation ΔB defined as the difference between any
given estimate and the preferred solution. The combined character-
istic uncertainty is then estimated as the root sum of squares of the
trend and annual balance components for each glacier. Several
other parameters such as lapse rates or degree-day factors were
explored separately and found to have a much smaller influence
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on solutions (e.g. adjusting the lapse rate by 1 °C only impacted
solutions by 10−2 m a−1, whereas the differences between geodetic
calibrations are 10−1 to 100 m a−1).

5. Results

We designed this reanalysis with the goal of comparing results
with climate and constraining uncertainties from variations in

methods. The approach yielded a suite of solutions from which
we quantify the magnitude of variance arising from various
extrapolation and calibration methods (i.e. sensitivity testing).
We selected a preferred solution in a floating-date (as opposed
to a fixed-date system; Cogley and others, 2011) ‘stratigraphic’
time system designed to quantify the duration of the accumula-
tion and ablation seasons and to keep mass changes from
any given season within a single mass-balance year. It uses
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Fig. 4. Calibrated cumulative annual balance time series for each glacier. (a) Gulkana, (b) Wolverine, (c) Lemon Creek, (d) South Cascade and (e) Sperry glaciers.
Black symbols with error bars show geodetic mass-balance estimates as estimated with Eqn (7). For LCG and SCG grey dots indicate where pre-existing records
were spliced to reanalyzed data. The annotated value on the left is the mean balance rate and uncertainty over the entire interval, and pre- and post-1990 mean
values are highlighted with grey bars that are not linked to the y-axis.
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time-variable glacier hypsometries, yielding conventional mass
balances (Elsberg and others, 2001; Cogley and others, 2011).
The solution incorporates a piecewise-linear mass-balance profile,
and is geodetically calibrated using the breakpoint approach.

5.1 Mass Balance

Mass loss at the benchmark glaciers over the study interval is ubi-
quitous (Fig. 4). Average mass loss rates range from −0.28 to
−0.58 m w.e. a−1, with uncertainty ranging between ±0.22 and
0.42 m w.e. a−1 (Table 2). Averaged over their entire records,
LCG exhibits the highest rate of mass loss and SG the lowest.
Average rates calculated before and after 1990 (approximate mid-
point) reveal that the rate of mass loss increased in all cases.
Continental GG lost mass continuously through the study,
whereas the maritime glaciers were initially closer to equilibrium
conditions (Fig. 4). Figure 5 shows that annual mass balances
are predominantly negative at all glaciers, especially in the latter
half of the records. Mass turnover, as assessed via the average of
seasonal balances (Fig. 5), can be categorized into continental
(low turnover, 1.2 m w.e. a−1 for GG) and maritime classes (high
turnover, e.g. 3.1 m w.e. a−1 for LCG). Annual balance variability,
as quantified by the standard deviation (Fig. S8), ranges between
0.6 and 1.1 m w.e. a−1, and is lowest at LCG, and highest at
WG, both of which are maritime climate settings. No progression
in variability between the continental and maritime exists.
Summer balance variability is equal to or exceeds winter variability
except at WG, where winter balance variability exceeds summer.

Annual balances exhibit field-significant (α = 0.10, or 90%
confidence) negative trends for all but SG, and trends at GG
and LC are 95% confident (Fig. 6a and Table S11). Winter bal-
ance trends exhibit variable slopes and sign, and none are signifi-
cant (Fig. 6b). Statistically significant trends in summer balance
exist at GG, WG and SCG (Fig. 6c). Temperature data used in this
analysis show long-term summer and annual-averaged warming
trends (Fig. 7), offering a mechanistic explanation for mass-
balance trends and the relatively high correlations between sum-
mer and annual balances (Table S12). Confidence in precipitation
data is inadequate to interpret trends in any detail.

All five of the glaciers lost area over the study interval (Fig. 8a),
with fractional area losses generally increasing from north to
south (Table 1). However, area losses do not track with absolute
mass change (Fig. 8b). For example, LCG lost <30% of its area
yet lost the most mass of any benchmark glacier during the period
of record.

5.2 Sensitivity and uncertainty

Total uncertainty consists of a component related to geodetic
mass balance and a component related to the direct glaciological
mass balance. The uncertainty in the geodetic calibrations varies
between ±0.1 and 0.2 m w.e. a−1, and this term is dominated by
time system adjustments (which average 25 days). Uncertainty
in the direct approach is estimated using Ns for glacier-wide
annual balance, which ranges between 0.1 and 0.4 m w.e. a−1.
This metric reflects solution sensitivity to the various combina-
tions of the extrapolation and calibration methods. Total uncer-
tainty estimates average ∼0.2 m w.e. a−1, except at GG, which
has a higher uncertainty of 0.44 m w.e. a−1 (Table 2).

6. Discussion

Long-duration glacier mass-balance records offer insight into
long-term changes in climate from forcing and response perspec-
tives (Pepin and others, 2015; Medwedeff and Roe, 2017).
They provide valuable observational constraints for climate,

hydrological and Earth system models (Beamer and others,
2016; Huss and Hock, 2018). However, loosely standardized
computation and/or analysis methods impede interpretations of
the often-complex relationship between glaciers and climate.
Advances in understanding of mass-balance processes, technol-
ogy and numerical methods improve our capability to assess gla-
cier mass balance, but also require careful and consistent
application to avoid introducing further bias and/or scatter within
or among historical records. To address these problems, we
reanalyzed USGS Benchmark Glacier datasets, with attention to
tightened temporal consistency, solution sensitivity and com-
parability. Our work reinforces the necessity of geodetic calibra-
tion (e.g. Zemp and others, 2013), illustrates the impact of
elevation-independent mass-balance drivers and offers insight
into broad spatial and temporal patterns of glacier change.

6.1 Glacier-wide solutions

Traditionally, the primary goal of glacier mass-balance programs
is to reduce multiple forms of measurement into a single number
representing glacier-wide average mass balance. This simple out-
put facilitates subsequent use of the data (e.g. by the sea-level rise
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Fig. 5. Reanalyzed results presented as seasonal (Bs, Bw) and annual (Ba) mass bal-
ance. (a) Gulkana, (b) Wolverine, (c) Lemon Creek, (d) South Cascade and (e) Sperry
glaciers. Time-averaged mass turnover (m w.e. a−1), expressed as the absolute value
of the mean of the winter (black) and summer (gray) balances, are annotated in color
for each panel.

Table 2. Solution uncertainty partitioned into annual balance (Ns) and volume
change (σg) components

Glacier
Ns

m w.e. a−1
σg

m w.e. a−1
Total

m w.e. a−1

Gulkana 0.43 0.10 0.44

Wolverine 0.19 0.13 0.23

Lemon Creek 0.06 0.20 0.21

S. Cascade 0.22 0.07 0.23

Sperry 0.16 0.21 0.26

Total reflects the characteristic uncertainty for each glacier through the combination of the
two components.
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or decision-making communities), but tends to mask key assump-
tions and uncertainties required during formulation. This
reanalysis was designed to provide exact, data-driven understand-
ing of these aspects of mass balance.

Figure 9a shows that uncalibrated solutions vary broadly at
GG, and diverge from geodetic balances in excess of uncertainty,
demonstrating the need for calibration prior to evaluating trends.
The apparent ability of the site-index method to outperform the
profile approach is largely an artifact of the maximally sparse
stake networks that were used over the majority of the time series
and the way this approach caps (instead of extrapolates) the
mass-balance rate at the upper measurement site (Fig. 9a).
Annual balance solution variants (Fig. 9b) show similar patterns

of interannual variability, which do not appreciably influence
the goodness-of-fit in the calibration process (Fig. 9c). Results
for the other benchmark glaciers are provided in Figs S9–S12.
Given the lack of observational constraints over the upper regions
of balance profiles and the greatly reduced uncertainty of historic
DEMs following SfM re-processing, we chose not to adjust
(beyond fitting) balance profiles (e.g. clipping of the upper tail)
to improve agreement with geodetic results. Rather, we apply sys-
tematic fits to point balance data and allow the geodetic calibra-
tion process to resolve biases between the time series (Cox and
March, 2004; Thibert and Vincent, 2009).

Although the increased availability of high-resolution geodetic
data fuels a desire to difference DEMs over shorter and shorter
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Fig. 6. Glacier-wide mass-balance anomaly (linearly detrended, as described in Section 4.4) time series. (a) annual balance anomaly (b) winter balance anomaly (c)
summer balance anomaly. Dots represent individual values, and lines least-squares fits. Solid lines represent statistically significant trends at 95% confidence levels
as evaluated with the two-sided t-test.
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intervals, confidence in geodetic mass balance decreases propor-
tionally to the differencing interval. Errors arising from
co-registration relate solely to the quality of DEM alignment
but are amortized over the difference interval, such that long
intervals minimize uncertainty. Errors arising from the
volume-to-mass conversion (i.e. glacier thinning/thickening)
relate to limits in our understanding of near-surface material
density variability across the glacier. Material density is com-
monly specified as a constant (850 ± 60 kg m−3; Huss, 2013),
thus this uncertainty scales with volume change. Realistically,
this uncertainty should scale with the fraction of the observed vol-
ume change attributable to firn or snow. In many cases this frac-
tion will be inversely proportional to the DEM difference interval,

suggesting that over short intervals, this formulation is likely to
underestimate true uncertainty (e.g. Klug and others, 2018). In
contrast, material density is better constrained for large volume
changes (generally longer intervals), and the uncertainty is likely
to be overestimated (Huss, 2013). Improved understanding of
temperate glacier firnification processes is essential to constrain
volume conversion to mass, especially as differencing intervals
continue to shorten.

Until a comprehensive firn-densification model is developed, we
suggest that these errors can be reduced using fitted calibrations
applied over optimal (decadal) time intervals. For example, given
the nominal case of a 50-year mass-balance record with 10 DEMs
acquired more frequently in the last 20 years, a global calibration
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Fig. 7. Meteorological trends at weather stations used in the reanalysis. (a) Mean annual temperature (°C). (b) Total winter (November–March) precipitation (mm)
and (c) ablation season (May–September) temperature (°C). Data representing South Cascade Glacier are from Diablo Dam weather station; Lemon Creek Glacier is
represented by Juneau Airport; Sperry Glacier by Flattop Snotel. Solid lines are indicative of significant trends, as evaluated with the modified Mann-Kendall test.
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distributes a single correction uniformly across the time series,
regardless if measurement networks, balance rates or glacier geom-
etry undergo significant change. Sequential calibration represents
an opposite end-member, distributing corrections stepwise for
every available geodetic mass balance, where large density errors
may alias geodetic balances over the recent sub-decadal differencing
intervals (Fig. 9d and Fig. S10d). The breakpoint calibration offers a
compromise to these two end-member approaches, maximizing the
incorporation of geodetic data, while also minimizing impacts of the
evolving relationship between glaciological and geodetic balances.

All of the USGS Benchmark Glaciers required geodetic calibra-
tion, which resulted in small changes to recently published values
(e.g. O’Neel and others, 2014; Le Bris and Paul, 2015; Clark and
others, 2017; WGMS, 2017; Florentine and others, 2018). At four
of the five glaciers in this study, geodetic balances are more nega-
tive than their direct glaciological counterparts (Fig. 9 and Figs
S9–S12), suggesting a consistent tendency for direct observation
networks to underestimate ablation (or overestimate accumula-
tion) across the suite of glaciers. These results strongly support
the concept that uncalibrated mass-balance solutions will possess
bias unless an independent geodetic assessment shows otherwise
(Krimmel, 1999; Cox and March, 2004; Huss and others, 2009;
Zemp and others, 2013).

The mismatch between direct and geodetic time series is com-
mon but remains poorly understood. Perhaps the most com-
monly suggested driver for the mismatch is internal or basal
mass balances (Cogley and Adams, 1998; Zemp and others,
2013; Andreassen and others, 2016). However, at the benchmark
glaciers, estimates for these processes are <0.06 m w.e. a−1, and
constitute only ∼15% of the average calibration (Table S10), sug-
gesting alternative processes drive the mismatch.

6.2 Elevation dependence

The balance profile method has become standard for extrapolat-
ing point observations over the glacier area (Beedle and others,
2014; Barandun and others, 2015; WGMS, 2017). The central
tenet of this method is that elevation provides a higher-order con-
trol than local effects such as snow redistribution, topographic
shading or surface features in glacier-wide mass-balance esti-
mates. Local effects are unlikely to be captured by logistically feas-
ible measurement networks, and are often assumed to be
negligible. However, the frequent divergence between geodetic

and direct mass balances suggests that important processes
elude the elevation-based parameterization.

At WG, ∼20 m amplitude drift and scour patterns character-
ize ∼20% of the accumulation zone (Fig. 10a; McGrath and
others, 2018). Safety and logistical practicalities prohibit the rou-
tine collection of a distributed set of measurements from this
region, precluding an estimate of average mass within this region
of extreme local variability. Sub-annual DEM analyses on gla-
ciers may help to reveal and resolve the complex spatial patterns
in snow accumulation, but require extensive, typically unavail-
able, data to constrain sub-annual changes in surface elevation
and its partitioning into components driven by ice flow, changes
in material density and mass-balance processes (Sold and others,
2013).

At SG, avalanching constitutes a primary snow accumulation
process, yet avalanche input is irregularly recorded by the measure-
ment network, which can alter winter balance estimates in both
directions (Clark and others, 2017). The steep headwalls serving
as avalanche source regions during winter also provide topographic
shading during the ablation season, resulting in an inverted sum-
mer balance profile and a larger mass turnover rate than expected
from regional climate forcing (Figs 3, 5 and Fig. S6). Roughly 80%
of the local forcing can be attributed to augmentation of the accu-
mulation budget and 20% to the ablation budget by shading
(Florentine and others, 2018). As shown in Figure 10b, SCG dis-
plays similar local controls; spatial distributions of firn align with
shading patterns along the glacier margin rather than with eleva-
tion. Finally, crevasse fields and icefalls increase surface roughness
and area-volume ratios, and in turn melt rates via changes to tur-
bulent and latent heat fluxes (Colgan and others, 2016). One such
example is found in the icefall between sites AU and N at WG
(Fig. 1c) where ablation rates measured within a 15 m elevation
range differ by more than 3 m w.e. (Fig. S5). Although hazards pre-
sent in icefalls tend to dissuade direct observations, the enhanced
melt occurring in such areas may be essential to include in glacier-
wide balance estimates.

Measurement networks rarely span the entire elevation range
of a glacier, which can markedly influence the slope of the balance
profile (Fig. 3 and Fig. S4), and may consequently explain a sub-
stantial fraction of the divergence between direct and geodetic
cumulative balances. For example, Figure 9a shows the 1967–
2018 uncalibrated cumulative balance at GG reaches +20 m w.e.
whereas the calibrated value is ∼−30 m w.e. Efforts can be
made to constrain the profile, either by imposing limits on mass-
balance rate (e.g. Sold and others, 2016), or by using short-term
(1–3 years) expanded measurement networks (i.e. stakes, pits,
GPR, DEMs) to sample logistically challenging regions of the gla-
cier. However, incorporation of short-term results into long-term
programmatic efforts can introduce additional bias over earlier
intervals of the record, instead of reducing overall modern biases.
Expanded measurement networks help to understand processes
driving mass-balance variability and trends (e.g. McGrath and
others, 2018), which can subsequently be used to adjust measure-
ment networks, especially if calibration breakpoints are estab-
lished at a similar time (e.g. GG, 1974; Fig. 9b). Periods of
overlap between old and new measurement networks are essential
to fully understand changes in bias resulting from changing the
network geometry.

For example, expanded measurement networks and GPR ana-
lyses at GG and WG suggest that the long-term measurements
underestimate accumulation (McGrath and others, 2018). Yet the
same expanded networks and the geodetic calibrations suggest
that the historically sparse networks underestimate ablation.
Indeed, negative geodetic calibrations prevail in existing reanalyses
worldwide, with roughly two-thirds of reanalyses producing more
negative geodetic balances (Zemp and others, 2013; Andreassen

Fi
g.

8
-
Co

lo
ur

on
lin

e,
Co

lo
ur

in
pr
in
t

Fig. 8. (a) Fractional area change, expressed as a percentage of the initial glacier
area. Initial year varies by glacier. (b) Absolute mass change, as determined
geodetically.
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and others, 2016; Klug and others, 2018), suggesting widespread
neglect of important ablation processes. Our calibration coefficients
(9 of 13 are negative) corroborate this tendency for glaciological
mass-balance estimates to have positive bias (Table S10).

These examples highlight processes that result in mass-balance
anomalies where safety or logistical factors challenge measure-
ment via direct observation networks. This problem is not unique
to the USGS Benchmark Glacier reanalysis; many of the long-
term mass-balance records globally are drawn from glaciers
with similar logistical challenges and hazards (e.g. WGMS,
2017). A measurement network with a truly random and
adequate spatial distribution to accurately capture mass balance
directly without a geodetic calibration would be cost-prohibitive
at most glaciers (e.g. Cogley and Adams, 1998), underscoring
the limitations of measurement networks and the absolute neces-
sity for geodetic calibration.

6.3. Glacier–climate interactions

Glaciers help to inform many aspects of Earth’s changing climate
system by integrating climate processes over basin scales and fill-
ing high-elevation knowledge gaps (McAfee and others, 2013;

Pepin and others, 2015; Medwedeff and Roe, 2017). The
Benchmark Glacier reanalysis provides an opportunity to assess
how traditional glacier-climate paradigms are evolving under
ongoing atmospheric warming. For example, do mass changes
at maritime glaciers remain linked to winter precipitation and
continental glaciers to summer temperature forcings (e.g.
McCabe and Fountain, 1995; Hodge and others, 1998)?

Our results do not show latitudinal patterns (e.g. south-to-
north gradient) in balance rates. Rather continentality exerts a
stronger influence on mass balance (Fig. 5). Historically, the mari-
time (WG, LCG, SCG) glaciers, buffered by abundant snow and
cooler summers, exhibited reduced mass loss rates. Compared
to earlier analyses, we found increasingly strong correlations
between summer and annual balances at all the glaciers
(Table S12), regardless of continentality (Hodge and others,
1998; Josberger and others, 2007; O’Neel and others, 2014).
Meteorology and mass-balance time series show significant trends
for ablation season processes (Figs 6 and 7). Trends in precipita-
tion are less robust due to snow undercatch issues, especially in
the windy conditions that characterize the alpine environment
(Kochendorfer and others, 2017), but suggest a non-uniform
role for precipitation forcing. Precipitation trends are negative
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Fig. 9. Sensitivity test results for GG. (a) Uncalibrated solutions according to different balance profile fitting methods. Geodetic mass-balance results (black
squares, black error bars) plotted with the year of the reference DEM indicated (black diamond). (b) Preferred reanalyzed solution for annual mass balance (colored
line) compared to other calibrated solution variants (gray lines). The range between these nine solutions for every year in the reanalysis time series is shown as gray
bars keyed to the secondary y-axis. (c) Calibrated cumulative mass balance for the preferred reanalyzed (colored line) and other solutions. (d) Geodetic calibration
coefficients for the breakpoint (solid black line), global (dashed black line), and sequential (dotted black line) methods. Other glaciers presented in Figs S9–S12.
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(or the environment is becoming windier) at SCG and WG, while
LCG, despite exhibiting the most negative mass-balance trend, is
experiencing an increase in winter snow (Fig. 7b). Together, these
analyses suggest that increases in ablation processes serve as the
primary driver of mass loss at all benchmark glaciers, in agree-
ment with recent global and regional assessments of mass balance
(Zemp and others, 2015; Box and others, 2018). In Alaska, warm-
ing trends recorded at the benchmark glaciers are of lower magni-
tude than at low-elevation stations, which is likely reducing mass
loss rates compared to regions with elevation-dependent warming
(Bieniek and others, 2014). This observation contrasts elevation-
dependent warming trends known to be occurring in midlatitude
mountains (e.g. Pepin and others, 2015; Palazzi and others,
2019). As warming continues to increase the fraction of precipita-
tion falling as rain, we expect further increases to mass loss rates
from the maritime glaciers due to reductions in snow accumulation
and associated processes (e.g. albedo feedback; McAfee and others,
2013; McGrath and others, 2017).

Regional climate only partially controls surface mass balance.
Microclimate, calving, albedo, debris cover, ice thickness and gla-
cier geometry all modify the relationship between glacier-wide
mass balance and regional climate (e.g. Colgan and others,
2016; McGrath and others, 2017; Florentine and others, 2018).
Many of these factors influence the benchmark glaciers, though
our understanding of their significance remains largely qualita-
tive. For example, SCG retreated into an overdeepened basin in
the 1920s, forming a lake. Subsequent calving increased mass
loss rates through ∼1970. At SG, local processes largely govern
the mass balance (Figs 3, 5 and Fig. S6), as seen at other cirque
glaciers (DeBeer and Sharp, 2009; Haugen and others, 2010;
Carturan and others, 2013). As the microclimate of the cirque
has become increasingly important, the influence of regional cli-
mate diminished, thus slowing SG’s eventual demise (Florentine
and others, 2018). Figure 8 shows each glaciers’ area change as
a function of time, revealing the expected size dependency of gla-
cier area change. The data also demonstrate a clear disconnect
between mass change and areal extent, a further caution against
the use of area or length as proxy measures for mass balance
(Roe and O’Neal, 2009; Roe, 2011; Bahr and others, 2015). All
USGS Benchmark Glaciers experienced accumulation area reduc-
tions over the study interval. As the ELA rises, the overall albedo

value decreases because more of the surface is bare ice and there-
fore darker, which drives a positive feedback with the mass bal-
ance (Yde and Paasche, 2010; Naegeli and Huss, 2017). Debris
can further complicate this feedback, depending on whether it
is thin and increases the ablation rate, or if it becomes thick
enough to insulate the ice as it does near the terminus of GG
(e.g. Pratap and others, 2015).

Glacier thickness influences the rate at which glacier geometry
can evolve, which determines the response time for the geometry
to achieve equilibrium with climate (e.g. Jóhannesson and others,
1989; Christian and others, 2018). GG is in the process of dividing
into two independent glaciers with different thickness profiles
(Farinotti and others, 2019) and thereby different response char-
acteristics (Paul and others, 2004; Jiskoot and Mueller, 2012). The
terminus area fed by the west branch (sites X, W, T) retreated
more than 1 km since 1993 and is in the process of fragmenting
and disconnecting from the main trunk of the glacier. In contrast,
the main trunk (sites B, D, V), characterized by lower surface
slopes and overdeepened ice, has thinned but retreated only
∼650 m. We expect continued retreat from the disconnecting
lobe, which will likely contrast the overdeepened trunk that is
more susceptible to altitude-mass-balance feedbacks, as observed
across other low-sloping Alaska glaciers (Sass and others, 2017).
This divergent response to the same climate highlights the com-
plex nature of linkages among mass balance, glacier geometry,
response time and regional climate forcing.

7. Conclusions

A consistent and comprehensive reanalysis of data from the USGS
Benchmark Glaciers informed uncertainties, facilitated intercom-
parison and allowed insight into climate forcing of five North
American glaciers. In agreement with other studies, our efforts
underscore the importance of geodetic calibration to accurately
assess mass-balance trends, and the irreplaceable ability of direct
measurements to resolve processes driving glacier change.

Mass loss from the USGS Benchmark Glaciers is ubiquitous
since measurements began, with an increase in the rate of mass
loss since 1990 at four of the five glaciers. The exception is SG,
where local controls, including avalanching and topographic
shading, now influence mass balance more than regional
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Fig. 10. Orthophotos produced from Worldview imagery acquired on (a) Wolverine Glacier, 12 September 2018 and (b) South Cascade Glacier, 14 October 2015 with
insets showing the full glacier extent. Both photos illustrate elevation-independent accumulation variability.
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climate. We observed no evidence of latitudinal influence on
mass-balance rate but found an increasingly important role
of summer balance in governing annual balance. The reanalysis
revealed that elevation-independent processes (crevasses, shad-
ing, snow redistribution) provide important, often neglected,
influence on glacier-wide mass balance. Reanalysis reduced
uncertainty in annual glacier mass balance, increasing our con-
fidence in deducing the rate at which glaciers are losing mass.
Given current projections of continued summer warming (e.g.
IPCC, 2013) and the decadal response times for mountain gla-
ciers (Harrison and others, 2001; Christian and others, 2018),
we expect continued mass loss with potential for further accel-
eration in loss rates from the USGS Benchmark Glaciers, as
well as the thousands of other glaciers in Western North
America and Alaska. Improved resolution of mass-balance pro-
cesses documented here is essential for developing physically
accurate models and to better resolve linkages among glaciers,
climate and ecosystems. As our confidence in our ability to
resolve mass changes at glaciers increases, it opens a new and
important layer of questions that address the wellbeing and
function of our ecosystems and planet in a warmer future.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/jog.2019.66.
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